

AWQ-160

November 30, 2004

Con 12-1-1 Doc # 33000

85-SDP-13-91

Ms. Nina Koger, Lead Engineer Energy & Waste Management Bureau Iowa Department of Natural Resources 502 East 9th Street Des Moines, Iowa 50319

RE:

2004 Annual Groundwater Quality Report

Ames-Story Environmental Landfill

85-SDP-13-91P P.N. 6004.320

Ms. Koger:

Find attached 1 copy of the 2004 Annual Groundwater Quality Report for the Ames-Story Environmental Landfill.

A copy of this data has been forwarded to Mr. William Fedeler, Ames-Story Environmental Landfill and IDNR Field Office #5 as required by the Permit.

Sincerely,

FOX ENGINEERING ASSOCIATES, INC.

Todd Whipple, CPG Project Manager

1000 Wing

Water | Wastewater | Solid Waste | Air | Land

1601 Golden Aspen Dr. Suite 103 Ames, Iowa 50010 1.515.233.0000 1.800.433.3469 Fax 1.515.233.0103

> www.foxeng.com info@foxeng.com

2004 ANNUAL GROUNDWATER QUALITY REPORT

OF

THE AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P AMES, IOWA

by:

FOX Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, Iowa 50010 (515) 233-0000

NOVEMBER, 2004

November 29, 2004

Ms. Nina Koger, Lead Engineer IDNR – Energy & Waste Management Bureau Wallace State Office Building 502 East 9th Street Des Moines, Iowa 50319

RE: AMES/STORY ENVIRONMENTAL LANDFILL ANNUAL GROUNDWATER QUALITY REPORT IDNR #85-SDP-13-91P

FOX PN 6004.320

Dear Ms. Koger:

This Annual Report has been prepared in accordance with IAC 567-113.26(8)d. The semiannual inspection reports have been submitted to IDNR in accordance with the General Provisions of the Permit. The following information and comments are presented in accordance with the IAC section referenced above.

1. ENVIRONMENTAL EFFECTS

a. Groundwater

The Hydrologic Monitoring System Plan (HMSP) for the site is approved by Special Provision X.7 of the current SDP Permit, dated November 24, 2003 (Attachment A). Conditions in the Permit require semi-annual and annual sampling to be performed at designated monitoring wells at the site. Trenches 1 through 4 are located in the north portion of the site and were filled between 1991 and 1999. It follows that all first year quarterly sampling episodes have been completed for the Trench 1 through 4 fill area.

Trenches 5 & 6 are located in the south portion of the site. Trench 5 construction was completed and approved for waste acceptance June 16, 1999. Trench 6 construction was completed and approved for waste acceptance May 26, 2000 (Permit Amendment #1). First year quarterly water sampling in Trench 5 & 6 was completed in March, 2001.

The site (both the north and south fill areas) is characterized as having two (2) groundwater systems that are monitored as part of the HMSP; the Water Table system and the Upper Aquifer sand layer system. MW-36 and MW-37 are the upgradient monitoring points for the Upper Aquifer System and the Water Table System, respectively.

Chemical analytical results for 2004 and Summary Tables are included in Attachment B. The chemical analytical data is also presented graphically by chemical compound over time in Attachments C, D, and E. The statistical computations are included in the tables in Attachments C, D, and E. Graphs of the concentration versus time for the sampling points illustrate those compounds that exceed statistical limits. Review of the graphs and data indicate the following observations.

Water Table System - Test results from upgradient MW-37 (Attachment C) indicate detectable concentrations of arsenic, barium, COD, chloride, iron (exceeding the Secondary MCL), magnesium, nitrogen ammonia, TOX, and zinc. The presence of the noted compounds in the upgradient well may indicate that the compounds are migrating onto the site from an off-site source(s), or are endemic to the region.

Downgradient MW's indicate detection of compounds at concentrations that do not exceed primary MCL's. The compounds that exceed statistical limits are summarized by monitoring well below:

MW-6	Barium, COD, chloride, and TOX
MW-28	COD, chloride, magnesium (3/92), and TOX
MW-23	Barium, chloride, lead (10/91), and TOX
MW-24	Barium, COD (9/92), chloride, lead (4/91), and TOX (9/93)
MW-31	Barium, COD, chloride, lead (10/91), and TOX
MW-25	Barium, COD, chloride, lead (10/91), and TOX
MW-33	Barium, COD, chloride, iron, ammonia, and TOX
MW-34	Barium, COD, chloride, lead (10/91), ammonia (3/96), and TOX
MW-35	Barium, COD (9/04), chloride, and TOX
MW-39	Arsenic (12/00), barium, chloride, and TOX
MW-40	Barium, chloride and TOX (9/02)
MW-43	Barium, COD, chloride, ammonia, and TOX

Indicator compounds such as chlorides, COD, and TOX have been found to exceed statistical control limits in a number of the downgradient MW's. In addition, barium, iron, magnesium, and nitrogen ammonia have also been detected in several downgradient wells. However, due to the presence of detectable concentrations of these compounds in the upgradient wells, these results have not been interpreted as a release of leachate into the groundwater. The lead concentrations detected in 1991 appear to be anomalous.

Upper Aquifer System - Test results from upgradient MW-36 (Attachment D) indicate detectable concentrations of arsenic, barium, COD, chloride, iron (in excess of secondary MCL's), magnesium, nitrogen ammonia, TOX, and zinc. The presence of the noted compounds in the upgradient well may indicate that the compounds are migrating onto the site from an off-site source(s), or are endemic to the region.

Downgradient MW's indicate detection of compounds at concentrations that exceed the primary MCL for arsenic at MW-8, MW-30, MW-38, MW-41, and MW-42. The secondary MCL for iron was exceeded at most wells for various sampling episodes. The secondary MCL for chloride was exceeded at MW-33 in March, 2003. The compounds that exceed statistical limits are summarized by monitoring well below:

MW-7	arsenic (12/00 & 3/01), barium, iron (3/03), and TOX (9/00 & 9/04)
MW-8	arsenic, barium, chloride (3/04), iron, ammonia (9/01 & 3/04), TOX, and zinc (3/01)
MW-29	arsenic, barium, COD (prior to 3/95), lead (10/91), iron (10/91), TOX, and zinc (3/01 & 3/02).
MW-30	arsenic (10/91), barium (4/91), COD (prior to 3/95), chloride (3/96), lead (10/91), and TOX
MW-32	COD, chloride (1/92), iron, magnesium, lead (4/91 & 10/91), and TOX
MW-25	COD, chloride, lead (10/91), magnesium, and TOX
MW-33	COD, chloride, iron, magnesium, nitrogen ammonia, and TOX
MW-34	COD, chloride, iron, lead (10/91), magnesium, nitrogen ammonia, and TOX
MW-35	COD, chloride, iron (9/97), magnesium, and TOX
MW-38	arsenic, barium, COD (9/04), chloride, and TOX (9/04)
MW-41	arsenic, barium, iron, and zinc (12/00)
MW-42	arsenic, barium, COD (9/04), chloride (9/01), iron, lead (6/00), and TOX

Indicator compounds such as chlorides, COD, conductivity, and TOX have been found to exceed statistical control limits in a number of the downgradient MW's. In addition, arsenic, barium, iron, magnesium, and nitrogen ammonia have also been detected in excess of statistical control limits in several downgradient wells. However, due to the presence of detectable concentrations in the upgradient wells, these results have not been interpreted as a release of leachate into the groundwater. The detected lead concentrations appear to be anomalous.

Surface Water - Test results from upgradient SMP-1 indicate detectable concentrations of barium, COD, chloride, iron (in excess of the secondary MCL), lead, magnesium, and TOX. The presence of the noted compounds at the upgradient monitoring point may indicate that the compounds are endemic to the stream.

Downgradient Surface Water sampling points indicate detection of compounds at concentrations that exceed the primary MCL for arsenic at SMP-4 and SMP-6. The secondary MCL for iron is commonly exceeded at SMP-6. The compounds that exceed statistical limits are summarized by monitoring well below:

SMP-2	COD	(3/03), chloride	(3/03) and lead (10/91)
0115		(4 0 10 4)		

SMP-4 arsenic, barium, COD, copper (9/02), magnesium, ammonia, and

zinc (6/00 & 3/01)

SMP-5 barium (9/02), and ammonia (3/03 & 3/04)

SMP-6 arsenic, barium, iron, magnesium, and ammonia (9/02 & 3/04)

2. STATISTICAL COMPUTATIONS

Statistical computations are summarized on the spreadsheets/graphs in Attachments C, D, and E. It appears there is significant variation in background levels of certain measured constituents in upgradient groundwater and aquifer monitoring wells. The presence of the noted compounds in the upgradient well may indicate migration (run-on) of several compounds from an off-site source(s) or may indicate that the compounds are endemic to the area.

As stated in the May 5, 1992, Semi-Annual Report, the <u>initial</u> background concentrations of certain parameters were higher in downgradient monitoring wells than in the corresponding upgradient monitoring wells <u>prior to acceptance of waste(s)</u> at this landfill. Discussions of site conditions are offered in the May 5, 1992, Semi-Annual Report (Attachment F) and should be referenced.

3. WELL MAINTENANCE AND RE-EVALUATION PLAN

Monitoring Well Performance Evaluation Reports dated June 10, 1993; March 30, 1998; and June, 2003 were prepared and submitted in accordance with IAC 567-113.21. The 2003 Report (most recent) concluded that the integrity of all MW's was intact, and that no changes in the HMSP were recommended. Monitoring well reevaluation is tentatively scheduled for June, 2008, and will again include monitoring wells associated with Trenches 1-6.

Review of the water elevation data for 2004 does not indicate excessive variability compared to historic water elevation data. Water elevation data is summarized in Attachment G. Based on the available water elevation data, the assessment of well conditions, and the hydrologic conditions at the site, the semi-annual water level measurements are interpreted to be sufficient to gauge notable changes in the site hydrology. The September, 2004 Water Table Contour Map and the September, 2004 Potentiometric Water Surface Map for the Upper Aguifer Sand Layer are included in Attachment G.

4. LCS PERFORMANCE

The leachate control system (LCS) consists of a series of gravity collection pipes that underlie the trench fills. Trenches 1 through 4 are located north of a topographic divide and the LCS drain north to a City of Ames interceptor sanitary sewer located along the stream to the north. The LCS in Trenches 5 and 6 are located south of the topographic divide and drains south to a City of Ames interceptor sanitary sewer located along the railroad to the south.

Filling and capping on the north end of Trenches 1-4 is complete. As required by the approved Development and Operational Plans (DOPS), leachate head monitoring wells have been installed at the downgradient point within each Trench. The four (4) leachate piezometers were installed in May, 2003.

Leachate Head elevations at the four (4) piezometers has been recorded monthly since installation and are summarized in the Table and graphs included in Attachment H. In summary, the leachate head elevation data demonstrates that the LCS is functioning as intended. The piezometers in Trench 1 & 2 are most frequently recorded as dry. The leachate thickness in Trench 3 has been recorded as ranging from 1.5 feet to 0.3 feet. The leachate thickness in Trench 4 has been recorded as ranging from 3.6 feet to 1.0 feet.

Based on information provided by the City of Ames (Attachment I), pretreatment testing results for May 3, 2004; and September 20, 2004 are as follows:

Parameter	Permit Limit (mg/L)	Allowance Discharge (mg/L)	05/3/04 Results (mg/L)	09/20/04 Results (mg/L)
рН	6.0-10.0		7.18	6.86
TSS	1,500/300		13	6.2
Ammonia-N	200/40		35	39
COD	2,500/250	1,500	460	450
TKN	/40	250	42	NT
BTEX	0.75		<0.25	<0.011
PCE			<0.25	NT
p-Cresol		0.025	<0.005	NT
Alpha-Terpineol		0.033	<0.005	NT
Benzoic Acid		0.12	<0.02	NT

Chemical analysis of the leachate indicates that all parameters are within permit limits. The volume of leachate conveyed to the Ames Water Pollution Control Plant is reported as 2,244 gallons per month (approximately 26,932 gpy).

The leachate system was cleaned November 29, 2002 as per IAC 567-113.26(11)a.8. Line cleaning is tentatively scheduled with Service Tech of Ames for November/December, 2005.

5. EXPLOSIVE GAS MONITORING

Explosive gas monitoring was performed quarterly through September, 2004, per IAC 567-113.26(15). Results of the explosive gas monitoring indicate that explosive gases were within applicable limits in site structures and along the entire site perimeter. In addition, carbon monoxide (CO) and hydrogen sulfide (H₂S) gases were undetected. Gas monitoring results are summarized in the table in Attachment J.

6. RECOMMENDATIONS

- a. Continue to perform semi-annual and annual sampling episodes in accordance with Special Provision X.7 of the Permit.
- b. Continue to perform semi-annual water level measurements in March and September of each year and reevaluate the data in the Annual Groundwater Quality Report in November of each year.
- c. A reduction in the frequency of leachate elevation measurements is requested. It is requested that the frequency of measurements be reduced from monthly to quarterly. The leachate elevation data will continue to be evaluated in the Annual Groundwater Quality Report/Leachate Control System Performance Evaluation in November of each year.
- d. The leachate collection lines in Trenches 1 through 6 should be cleaned as necessary according to IAC 567-113.26(11)a.8 in 2005.
- e. Continue to perform quarterly explosive gas monitoring and report the results in the Annual Groundwater Quality Report each November.

If the Department has any questions or if additional information is needed, contact Mr. William Fedeler, Owner, or myself at the FOX Engineering office in Ames.

ATTACHMENT A Permit, Permit Amendment, and Correspondence

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR SALLY J. PEDERSON, LT. GOVERNOR DEPARTMENT OF NATURAL RESOURCES

JEFFREY R. VONK, DIRECTOR

January 22, 2004

RECEIVED JAN 2 9 2004

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. Permit No. 85-SDP-13-91P Amendment #1

Dear Mr. Fedeler:

Enclosed is Amendment #1 to the permit issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. The amendment and approved plans must be kept with the permit and the approved plans at the sanitary disposal project in accordance with solid waste rule 567 IAC 114.26(2)"c". Please review this amendment with your operators, as they must become familiar with it.

The enclosed amendment incorporates: 1) The construction documentation forms for leachate head piezometers LPZ-T1-1, LPZ-T2-1, LPZ-T3-1, and LPZ-T4-1, as submitted by FOX Engineering Associates, Inc. on November 24, 2003; and 2) The request letter from FOX Engineering Associates, Inc. dated December 18, 2003, concerning the waste tonnage calculation methodology; as part of the permit documents.

Note that the amendment contains conditions that may require a response or action by you which, if not properly complied with, may prompt enforcement action by this department.

If you have any questions, you may contact me at 515/281-8968.

Sincerely,

Jeff Simmons

Environmental Engineer

Energy & Waste Management Bureau

JNS\JNS\J:AmesStoryEnv03amd1X.doc

Attachments

copy: Douglas J. Luzbetak, P.E.
FOX Engineering Associates, Inc.
1601 Golden Aspen Drive, Suite 103
Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

IOWA DEPARTMENT OF NATURAL RESOURCES AMENDMENT #1

Issued by:

Nina M. Koger

Environmental Services Division

For: the Director

Date Issued:

January 22, 2004

Permit number 85-SDP-13-91P, issued on November 24, 2003, for the Ames-Story Environmental C&D Landfill, Inc. is hereby amended by the following:

- 1. The documentation forms for the construction of leachate head piezometers LPZ-T1-1, LPZ-T2-1, LPZ-T3-1, and LPZ-T4-1 as submitted by FOX Engineering Associates, Inc. on November 24, 2003; are incorporated as part of the permit documents.
- 2. The waste tonnage calculation methodology described in the letter from FOX Engineering Associates, Inc. dated December 18, 2003; is hereby approved and incorporated as part of the permit documents. The following conditions shall apply:
 - a. The permit holder shall be responsible for annually weighing on an off-site certified scale, a minimum of twelve of each type of vehicle and container waste load to use as a basis for determining the average waste tonnage for the various types of waste holding vehicles that utilize the landfill.
 - b. The permit holder shall be responsible for attaching supporting documentation for tonnage calculations to the Solid Waste Fee Schedule and Retained Fee Report on a semiannual basis, commencing with the report due April 1, 2004.

STATE OF IOWA

THOMAS J. VILSACK, GOVERNOR SALLY J. PEDERSON, LT. GOVERNOR DEPARTMENT OF NATURAL RESOURCES
JEFFREY R. VONK, DIRECTOR

November 24, 2003

William K. Fedeler P.O. Box 2483 Ames, IA 50010

RE: Ames-Story Environmental C&D Landfill, Inc. Permit No. 85-SDP-13-91P Permit Renewal

Dear Mr. Fedeler:

Enclosed is the renewed permit for the Ames-Story Environmental C&D Landfill, Inc. The permit and the approved plans must be kept at the sanitary disposal project in accordance with solid waste rule 567 IAC 114.26(2)"c". Please review the permit with your operators, as they must become familiar with it.

Note that the permit contains special provisions that may require a response or action by you which, if not properly complied with, may prompt enforcement action by this department.

Please note that Special Provision #11 requires that by January 1, 2004, either an on-site scale is provided or a plan is submitted that details an alternative method for determining waste tonnage, such as annually weighing several representative truckloads of waste at a certified scale to use as a basis for establishing the waste conversion weights for different types of trucks.

The submitted application was reviewed and placed in the permit record files. No plan updates were submitted with the application.

If you have any questions regarding this permit, please contact me at 515/281-8968 or Nina Koger at 515/281-8986.

Sincerely.

Jeff Simmons

Environmental Engineer

Energy & Waste Management Bureau

JNS\JNS\J:AmesStoryEnv03pmtX.doc

Attachment

copy: Douglas J. Luzbetak, P.E.
FOX Engineering Associates, Inc.
1601 Golden Aspen Drive, Suite 103
Ames, IA 50010

DNR Field Office #5

Nina Koger, DNR

Jeff Simmons, DNR

IOWA DEPARTMENT OF NATURAL RESOURCES SANITARY DISPOSAL PROJECT PERMIT

I. Permit Number: 85-SDP-13-91P

Ames-Story Environmental C&D Landfill, Inc.

II. Permitted Agency: Ames-Story Environmental Landfill, Inc.

III. Project Location: Parcel "A" [Lot 3 and the West 100 feet of Lot 2, Dayton Road

Development Subdivision] and approximately the West 508.1 feet of Lot 1 in Block 5, Landfill Addition, both parcels located in the corporate limits of the city of Ames and in a portion of the E½ of

Section 1, T83N, R24W, Story County, Iowa

IV. Responsible Official

Name: William K. Fedeler Address: P.O. Box 2483

Ames, IA 50010

Phone: 515/232-5864

V. Licensed Design Engineer

Name: Douglas J. Luzbetak, P.E.

Address: FOX Engineering Associates, Inc.

1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Phone: 515/233-0000 FAX: 515/233-0103

Iowa License Number: 12654

VI. Date Permit Issued: November 24, 2003

VII. Permit Expiration Date: November 24, 2006

VIII. Issued by:

Environmental Services Division

for the Director

IX. General Provisions

The above named permitted agency is hereby authorized to operate a sanitary landfill at the described location in conformance with Iowa Code Chapter 455B, the rules pursuant thereto existing at the time of issuance, and any subsequent new rules which may be duly adopted, and any provisions contained in Section X of this permit.

The project shall be operated according to the engineering plans and specifications approved by the Department of Natural Resources and these shall become a part of this permit. Any modifications or deviations from the engineering plans and specifications must have prior approval by the Department and an amendment to this permit issued.

The permitted service areas and conditions are specified in Special Provision #1 in Section X. Any deviations from the specified comprehensive planning documents, including changes in waste accepted from outside the permitted service areas, or any changes in the amount of waste, or changes in the waste stream shall have prior comprehensive planning approval by the Department.

The issuance of this permit in no way relieves the applicant of the responsibility for complying with all other local, state, and federal statutes, ordinances, and rules or other requirements applicable to the establishment and operation of this sanitary landfill.

No legal or financial responsibility arising from the construction or operation of the approved project shall attach to the State of Iowa or the Department of Natural Resources due to the issuance of this permit.

If title to this project is transferred, the new owner must apply to the Department for a transfer of this permit within thirty days of the date of title transfer. This permit is void sixty days after the date of title transfer unless the Department has transferred the permit.

The permit holder shall file a quarterly Solid Waste Fee Schedule and Retained Fee Report utilizing the Department's Form 542-3276 and tonnage fee payment, as applicable, for all wastes received, recycled/reused, and disposed at the sanitary landfill in accordance with Iowa Code section 455B.310. The quarterly report shall incorporate a detailed breakdown of all accepted solid waste authorized under this permit.

The permit holder is required to maintain records for the service area of tonnages accepted at this facility. Records shall be developed and maintained in such a way that tonnages from each county/state may be tracked in order to provide the local solid waste agency and the Department with accurate statistics from which generation/diversion rates will be derived. The reported tonnage shall be separated by Boone County, Greene County, Story County, Dallas County, and Calhoun County, consistent with the service area as detailed in Special Provision #1. The reports are due on a quarterly basis. The reports will be due January 1, April 1, July 1 and October 1 for the quarters ending September 30, December 31, March 31 and June 30, respectively. The permit holder shall mail the completed form to the Planning, Permitting and Engineering Services Section, Wallace State Office Building, 502 East Ninth Street, Des Moines, Iowa 50319. This reporting procedure supersedes any previous conflicting permit provisions.

The permit holder is <u>prohibited from burying or burning yard waste</u> as stipulated under 567 IAC 105.1(3) and Iowa Code sections 455D.9(1) and (6). Yard waste is defined in 567 IAC 100.2(455B,455D) as grass clippings, leaves, garden waste, brush and trees. Yard waste does not include tree stumps. Clearing and grubbing wastes generated at the landfill site and tree stumps may be buried. Only yard waste which has been separated at its source from other solid waste may be accepted by the permit holder for reuse purposes if authorized in Section X of this permit or after obtaining the necessary permit amendments. This prohibition supersedes any previous conflicting permit provisions.

Solid waste disposed at this site shall not exhibit free liquids, toxic or hazardous properties. No hazardous wastes as defined by Iowa Code section 455B.411 may be disposed at this landfill.

The permit holder is prohibited from disposing of nickel-cadmium, mercuric oxide, and sealed lead-acid household batteries, as specified in 567 IAC 145.1(455B,455D), effective beginning September 20, 1995.

This facility shall be staked as necessary and inspected on a semiannual basis by a professional engineer licensed in the State of Iowa. The engineer shall prepare a brief report describing the site's conformance

and nonconformance with the permit and the approved plans and specifications during the inspections. These reports shall be submitted by May 1 and November 1 each year to the Department's Main and local Field offices. The Department shall be notified if any inspection reveals any nonconformance with the permit and approved plans and specifications.

Failure to comply with Iowa Code Chapter 455B, or any rule of order promulgated pursuant thereto, or any or all provisions of this permit may result in 1) a civil penalty of up to \$5000 for each day of violation, pursuant to Iowa Code section 455B.307, or 2) the suspension or revocation of this permit, pursuant to Iowa Code section 455B.305.

X. Special Provisions

1. The permit holder is authorized to accept construction and demolition wastes, diseased trees, tree stumps, nonhazardous petroleum-contaminated soils, and asbestos for disposal in accordance with the approved Central Iowa Solid Waste Management Association Comprehensive Plan, Part I. The Comprehensive Plan, Part I as approved by the Department on March 31, 2003; any approved amendments to the plan; and the latest plan update, are hereby incorporated as permit plan documents.

The permitted service area includes: All cities and the unincorporated area, including Woodward State Hospital, in Boone County; all cities, excluding Jefferson, and the unincorporated area in Greene County; the cities of Ames, Cambridge, Colo, Gilbert, Huxley, Kelley, Maxwell, McCallsburg, Nevada, Roland, Slater, Story City, Zearing and the unincorporated area in Story County; the cities of Bouton, Granger, and Woodward in Dallas County; and the cities of Farnhamville, Lohrville, and Somers in Calhoun County.

In accordance with 567 IAC 101.8(2), the permit holder shall submit the Comprehensive Solid Waste Management Plan, Part I update to the Department approved plan by November 1, 2005.

- 2. The permit holder shall develop and operate the site in accordance with: 1) The Revised Development Plan (RDP) dated March 29, 1996, as submitted by FOX Engineering Associates, Inc. and approved on May 14, 1996; and 2) Revised Figure 20 dated September 1998, Revised Figure 28 dated July 2, 1998, and Plan Sheet 4 updated September 24, 1998, all as submitted by FOX Engineering Associates, Inc. and approved on September 29, 1998.
 - a. The approved site vertical height shall not exceed a maximum waste elevation of 970 in the North central waste area and 967 feet in the South central waste area.
 - b. The approved horizontal site development is limited to Trenches #1, #2, #3, and #4 in the North waste area; and to Trenches #5 and #6 in the South waste area.
 - Revised Figures 20 and 28 and updated Plan Sheet 4 of the RDP have been revised to show the omission of previously designated Trench #7.
 - c. The Department acknowledges the deviation from IAC 567 IAC 114.26(1)"m"(6) relative to the separation distance from the adjacent property line, as documented by a waiver granted by the adjacent property owner on March 5, 1996.
 - d. The Construction Certification dated May 13, 1996, as submitted by FOX Engineering Associates, Inc. and approved on May 14, 1996, is incorporated as part of the permit documents.

- e. The detailed soils inventory for the liner system, and weekly, intermediate, and final cover usage as submitted by FOX Engineering Associates, Inc. under cover letter dated June 6, 1996 and approved on September 13, 1996, is incorporated as part of the permit documents.
- f. In accordance with the variance approval of February 19, 1999, the permit holder was authorized to increase in the liner side slope from a maximum of 4:1 to a 3:1 side slope on the north perimeter slope of the Trench 5 expansion area as shown on Plan Sheet 4 of the RDP updated January 4, 1999, and prepared by FOX Engineering Associates, Inc.
- g. The Construction Certification for Trench #5, dated June 11, 1999, as submitted by FOX Engineering Associates, Inc. and approved on July 12, 1999, is incorporated as part of the permit documents.
- h. The Construction Certification for Trench #6, dated May 10, 2000, as submitted by FOX Engineering Associates, Inc. and approved on May 26, 2000, is incorporated as part of the permit documents.
- 3. Solid waste shall be deposited at the toe of the working face, spread in two foot layers, and compacted on a 3:1 slope.
- 4. Litter fences shall be used when needed to confine windblown materials to the operating area.
- 5. Surface water shall be diverted around the fill area and surface drainage shall be provided at the toe of the working face.
- 6. An all weather fill area accessible during all weather conditions under which solid waste is received and disposed at the site shall be provided at all times.
- 7. Hydrologic monitoring at the site shall be conducted in accordance with the Hydrologic Monitoring System Plan (HMSP) dated March 29, 1996, as submitted by FOX Engineering Associates, Inc. and approved on May 14, 1996; and the following provisions:
 - a. The HMSP for the North and South waste areas shall include the following:

Water table monitoring points, consisting of upgradient groundwater monitoring point MW-37; and downgradient groundwater monitoring points MW-6, MW-23, MW-24, MW-25, MW-28, MW-31, MW-34*, MW-35*, MW-39, MW-40, and MW-43.

Uppermost Aquifer monitoring points, consisting of upgradient groundwater monitoring point MW-36; and downgradient groundwater monitoring points MW-7, MW-8, MW-29, MW-30, MW-32, MW-33, MW-34*, MW-35*, MW-38, MW-41, and MW-42.

Surface Water monitoring points, consisting of upgradient surface water monitoring points SW-1 and SW-4; and downgradient surface water monitoring points SW-2, SW-3, SW-5, SW-6.

* Screened across both the water table and the uppermost aquifer.

- b. Monitoring points not designated for water quality monitoring shall be retained as water level measuring points.
- c. Department construction documentation form 542-1277 and boring logs for all monitoring wells and piezometers shall be submitted within 30 days of installation. Department construction documentation form 542-1323 shall be submitted within 30 days of establishing surface water monitoring points. Abandonment of any monitoring well requires prior approval by the Department. Well abandonment document DNR FORM 542-1226 shall be submitted within 30 days of plugging a well.
- d. First year quarterly samples shall be collected from any designated new monitoring well, dewatering system, and any monitoring point which lacks four quarterly samplings and analyzed for the parameters listed in 567 IAC 114.26(4)"d", "e" and "f". Baseline testing for the parameters listed in 567 IAC 114.26(4)"f" shall be conducted during the fall. All statistical evaluations shall include the updated baseline and subsequent sampling documentation.
- e. Continued semiannual sampling shall take place in March and September of each year and be analyzed for the parameters listed in 567 IAC 114.26(4)"e". Routine annual testing for the parameters listed in 567 IAC 114.26(4)"f" shall be conducted during September of each year.
- f. The Method Detection Limit (MDL) for the test parameters shall not exceed action levels as defined in 567 IAC Chapter 133. If the action levels cannot be feasibly achieved using procedures described in 567 IAC 114.26(5), then the MDL shall not exceed the lowest feasible level.
- g. Samples collected for dissolved metals analysis shall be field filtered, preserved, and promptly transferred to a certified laboratory for analysis.
- h. If laboratory results exceed the upgradient mean plus two standard deviations or the Maximum Contaminant Level (MCL) for any parameter, the Department shall be notified within 30 days of receipt of the analytical results.
- i. Surface monitoring points must be clearly marked in the field and a method for measuring the flow rate at each sampling point shall be devised.
- j. Results of all analysis and the associated Department sampling forms 542-1322 and 542-1324 shall be submitted to the Department's Main and local Field offices within 45 days of the sample collection.
- k. An Annual Water Quality Report (AWQR) summarizing the effects the facility is having on groundwater and surface water quality shall be submitted to the Department's Main and local Field offices by November 30 each year. This report shall be prepared in accordance with 567 IAC 114.26(8)"d" by a Professional Engineer licensed in the State of Iowa. The AWQR shall include the results of the semiannual groundwater measurements and the routine groundwater analyses conducted at the monitoring points. The Special Waste Authorization information no longer needs to be addressed in the AWQR, but instead shall now be provided in the Solid Waste Fee Schedule and Retained Fee Report.
- 8. In accordance with the variance approval of November 10, 1998, the permit holder is authorized to reduce the frequency of groundwater level measurements from monthly, as required by 567 IAC

- 114.26(4)"b", to semiannually. The measurements shall be taken during the semiannual sampling events, with the results submitted in the corresponding semiannual monitoring reports and the Annual Water Quality Report.
- 9. The permit holder is authorized to construct and operate the leachate control system in accordance with the Leachate Control Plan (LCP) as provided in the RDP dated March 29, 1996, and prepared by FOX Engineering Associates, Inc. and approved on May 14, 1996; the revisions as noted in Special Provision #2 above; and the following conditions:
 - a. Leachate collected from the leachate control system shall be disposed of either by treatment in an on-site facility with an NPDES permit or by discharge to the City of Ames publicly owned treatment works (POTW). If the discharge is to a POTW with a pretreatment program approved by the Department, the discharge must comply with the terms and conditions of a local permit issued for the discharge by the POTW. If the discharge is to a POTW without an approved pretreatment program a completed treatment agreement form shall be submitted to the Department's Wastewater Section. Copies of the local permit or treatment agreement shall be provided to the Department's Energy and Waste Management Bureau and the local Field office. The treatment agreement must be on DNR Form 31 (542-3221) and must comply with the requirements of 567 IAC 64.3(5).
 - b. In accordance with 567 IAC 114.26(11)"d", the Department shall be notified and the site inspected when the initial construction of each phase of the leachate control system has been completed. Prior to the inspection, construction certification reports shall be submitted to the Department's Main and local Field offices. No waste disposal shall commence in a new phase until the site development has been inspected and approved by the Department.
 - c. The leachate control system shall be operated and maintained in accordance with the approved permit documents. After implementation of the leachate control system, the permit holder shall routinely collect the necessary information and evaluate the effectiveness of the system in controlling the leachate. All documentation shall be summarized in a Leachate Control System Performance Evaluation (LCSPE) Report. Effective control shall be considered as maintaining compliance with maximum leachate head as defined in 567 IAC 114.26(11)"a"(1), achieving the lowest possible leachate head as required in 567 IAC 114.26(12)"b"(2), and maintaining surface and groundwater quality standards at compliance monitoring points.
 - d. Leachate head levels and elevations shall be measured monthly at all piezometers and the volume of leachate collected and transported to the treatment works recorded. Records of leachate contaminants testing required by the treatment works and any NPDES permit for on-site treated leachate discharges shall be maintained.
 - e. The permit holder shall annually submit the LCSPE Report, including record data, as a supplement to the facility Annual Water Quality Report, as defined in 567 IAC 114.26(8)"d". The performance evaluation shall include proposed additional leachate control measures and an implementation schedule in the event that the constructed system is not performing effectively.
 - f. In accordance with the variance approval of April 12, 1991, on-site leachate storage is waived at this time. An on-site leachate storage system shall be required upon the event that any complications arise or if the city of Ames can no longer accommodate direct discharge from the landfill.

- 10. The permit holder shall quarterly monitor and annually report site methane concentrations in accordance with 567 IAC 114.26(15)"b" after May 18, 1994. Specific actions, as defined in the rules, shall be taken in the event of methane gas level limit exceedances.
 - The annual report summarizing the methane gas monitoring results and any action taken resulting from gas levels exceeding the specified limits during the previous 12 months shall be submitted to the Department's Main and local Field offices by November 30 of each year.
- 11. The permit holder shall provide on-site scale facilities for the purposes of weighing and reporting solid wastes disposed of at the landfill. If conditions are such that make it impractical to provide an on-site scale, then off-site scale facilities or an alternative method to weighing may be used if justified and approved by the Department. The permit holder shall comply with the waste weighing, record keeping and tonnage fee reporting requirements defined in 567 IAC 101.9(455B,455D). The scale weighing facilities shall comply with the certification and licensing requirements of the Iowa Department of Agriculture and Land Stewardship. Certification shall be maintained current at all times. The permit holder shall submit a copy of the weighing scale facility licensing certificate issued by the Iowa Department of Agriculture and Land Stewardship and a copy of renewals shall be provided to the Department's Main and local Field offices.

The landfill does not currently have an on-site scale or an alternative method for determining waste tonnage approved. Therefore, the Department requires that the permit holder provide an on-site scale facility, or a request for approval of an alternative plan with included justification by no later than January 1, 2004.

- 12. The Emergency Response and Remedial Action Plan (ERRAP) submitted by FOX Engineering Associates, Inc. and dated December 2001, in compliance with 567 IAC 114.30(455B) was approved by the Department on January 17, 2002. An updated ERRAP shall be submitted at the time of each permit renewal application. An updated ERRAP shall be included with any request for permit modification to incorporate a facility expansion or significant changes in facility operation that require modification of the currently approved ERRAP.
- 13. The permit holder shall close the landfill site in accordance with the Closure/Post Closure Plan (C/PCP) dated March 15, 1996, as prepared by FOX Engineering Associates, Inc. and approved on May 14, 1996.
 - a. The clearance, dated May 13, 1996, from the Natural Resources Conservation Service relative to compliance with wind and soil loss limit regulations, in accordance with 567 IAC 114.26(1)"j" for all development areas, is incorporated as part of the permit documents.

ATTACHMENT B Analytical Data & Summary Tables

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

NORTH TRENCHES

		SAMPLING !	DATE:	Sept. 27, 20	04												
	ACTION	U.G.W	U.G.W	U.A.W	U.A.W	D.G.W	D.G.W	D.G.W	D.G.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	SURFACE N		
PARAMETER	LEVEL	MW 22	MW 28	MW 27	MW 29	MW 23	MW 24	MW 26	MW 31	MW 30	MW 32	MW 25	MW 33	_MW 34	SW 1	SW 2	SW 3
ug/L																	
Benzene *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT	NT	NT	NT_	NT	NT	dry
Carbon tetrachloride *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
1,4-Dichlorobenzene *	75	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT	NT	NT	NT_	NT	NT	dry
1,2-Dichloroethane *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT	NT	NT	NT_	NT	NT	dry
1,1-Dichloroethene *	7	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
1,1,1-Trichloroethane *	200	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT .	NT	NT	NT	NT	NT	dry
Trichloroethene *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
mg/L																	
Arsenic, dissolved	0.05	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Barium, dissolved	2.0	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT	NT	NT	NT NT	NT	NT	dry
Cadmium, dissolved	0.005	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Chromium, dissolved	0.1	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Lead, dissolved	0.015	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Mercury, dissolved	0.002	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Magnesium, dissolved		Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Zinc, dissolved	2	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Iron, dissolved		Plugged	<0.03	Plugged	0.034	<0.030	<0.03	Plugged	3.51	0.454	<0.030	0.034	2.56	0.39	<0.030	0.036	dry
Copper, dissolved	1.3	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Chloride		Plugged	100	Plugged	<10	15	25	Plugged	35	<10	15	49	51	21	111	138	dry
Nitrogen, Ammonia		Plugged	<1	Plugged	<1.0	<1.0	<1.0	Plugged	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	dry
Chemical Oxygen Demand		Plugged	17	Plugged	<10	17	12	Plugged	30	<10	16	16	37	21	14	<10	dry
Total Organic Halogens		Plugged	0.03	Plugged	0.014	0.047	NT	Plugged	0.101	<0.010	0.01	0.034	0.034	0.012	0.046	0.044	dry
Phenols		Plugged	<0.100	Plugged	<0.100	<0.100	NT	Plugged	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	dry
pH		Plugged	7.3	Plugged	7.7	7.1	7.1	Plugged	7	7.5	7	7	7.1	7.2	9.4	8.4	dry
Temperature, celsius		Plugged	21	Plugged	17	16	10	Plugged	15	15	12	15	15	18	22	21	dry
Conductivity, mv		Plugged	1580	Plugged	760	1398	1138	Plugged	1870	848	1216	1546	1300	1218	871	1096	dry
				U.A.W - Upg	gradient aqu	ifer well											

NT - Not tested

D.G.W. - Downgradient groundwater well

D.A.W. - Downgradient aquifer well

U.G.W - Upgradient groundwater well

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

SOUTH TRENCHES

		SAMPLING !	DATE:	Sept. 27, 20														
	ACTION			BOTH	U.A.W	U.G.W	D.G.W	D.A.W	D.A.W	D.A.W	D.G.W	D.G.W	D.A.W	D.A.W	D.G.W		MONITORIN	
PARAMETER	LEVEL	FIELD	TRIP	MW 35	MW 36	MW37	MW 6	MW 7	MW 8	MW 38	MW 39	MW 40	MW 41	_MW 42	MW 43	SW 4	SW 5	SW 6
ug/L																		
Benzene *	5	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Carbon tetrachloride *	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
1,4-Dichlorobenzene *	75	NT	NT	NT	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
1,2-Dichloroethane *	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
1,1-Dichloroethene *	7	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
1,1,1-Trichloroethane *	200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Trichloroethene *	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
mg/L												• • •			·			AIT
Arsenic, dissolved	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Barium, dissolved	2.0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Cadmium, dissolved	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Chromium, dissolved	0.1	NT	NT_	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Lead, dissolved	0.015	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Mercury, dissolved	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Magnesium, dissolved		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Zinc, dissolved	2	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Iron, dissolved		NT	NT	<0.030	<0.030	5.25	<0.030	0.267	4.16	0.229	0.136	<0.030	2.23	1.94	<0.030	dry	dry	4.67
Copper, dissolved	1.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	dry	dry	NT
Chloride		NT	NT	114	<10	12	56	14	<10	30	30	43	11	16	60	dry	dry	76
Nitrogen, Ammonia		NT	NT	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	3.3	dry	dry	1.0
Chemical Oxygen Demand		NT	NT	27	<10	<10	<10	<10	10	16	<10	<10	12	14	<10	dry	dry	23
Total Organic Halogens		NT	NT	0.029	<0.010	<0.010	0.074	0.013	<0.010	0.015	<0.010	0.01	<0.010	0.012	0.03	dry	dry	0.04
Phenois		NT	NT	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	dry	<u>dry</u>	<0.100
						- 4	~ =		7.0	7.0	-	7.0	7.7	7.5				7
рН		NT	NT	7.2	7.5	7.1	6.7	7.8	7.6	7.3	/	7.6	7.7	7.5	6.8	dry	dry	
Temperature, celsius		NT	NT	16	16	19	18	15	14	16	18	18	16	15	15	dry	dry	21
Conductivity, mv		NT	NT	995	750	1819	1673	822	774	1264	1588	1310	790	890	1254	<u>dry</u>	dry	1400

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

October 12, 2004

Page 1 of 4

Work Order: 14I1124

Report To

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Project: Ames/Story C&D SLF

Project Number: [none]

Work Order Inform	nation	
	09/27/2004 Freeman, Ri 515-233-000	chard

Analyte	Re	sult	MRL	Method		Analyzed	
4I1124-01 MW-37				Matrix:Water		Collected: 0	9/24/04 14:40
Determination of Conventional Chemis	try Parame	ters			•		
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	MAQ	09/28/04	
Chloride	12	mg/l	10	EPA 9252	MAQ	09/28/04	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04	
Total Organic Halogens (TOX)	< 0.010	mg/l	0.010	EPA 9020	TVK	10/07/04	0:00
Determination of Dissolved Metals			2770				
Iron, dissolved	5.25	mg/l	0.030	EPA 6010B	LAR	09/29/04	16:41
14I1124-02 MW-39				Matrix:Water		Collected: (9/24/04 10:10
Determination of Conventional Chemis	atry Parame	eters	•	•			
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	MAQ	09/28/04	
Chloride	30		10	EPA 9252	MAQ	09/28/04	
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04	
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04	
Total Organic Halogens (TOX)	< 0.010	mg/l	0.010	EPA 9020	TVK	10/07/04	0:00
Determination of Dissolved Metals							
Iron, dissolved	0.136	mg/l	0.030	EPA 6010B	LAR	09/29/04	16:45
14I1124-03 MW-40				Matrix: Water		Collected:	09/24/04 12:30
Determination of Conventional Chemi	stry Param	eters					
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	MAQ		
Chloride		mg/l	10	EPA 9252	MAQ		
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA		
Phenols, total	< 0.100	_	0.100	EPA 9065	KRV		
Total Organic Halogens (TOX)	0.010	mg/l	0.010	EPA 9020	TVK	10/07/04	0:00
Determination of Dissolved Metals							16.40
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	09/29/04	16:49
14I1124-04 MW-36				Matrix:Water		Collected:	09/24/04 14:30

14I1124-04 MW-36 Matrix:Water Collected: 09/24/04 14:

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted.

MRL= Method Reporting Limit.

Work Order: 14I1124

October 12, 2004

Page 2 of 4

Analyte	Result	MRL	Method			Qualifier
411124-04 MW-36			Matrix: Water	•	Collected: 09/24/04	4 14:30
Determination of Conventional Chemi	stry Parameters					
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	MAQ	09/28/04 13:24	
Chloride	<10 mg/l	10	EPA 9252	MAQ	09/28/04 12:35	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04 11:33	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV	09/30/04 10:53	
Total Organic Halogens (TOX)	<0.010 mg/l	0.010	EPA 9020	TVK	10/07/04 0:00	
Determination of Dissolved Metals	•				00/00/04 16 60	·
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	LAR	09/29/04 16:53	
14I1124-05 MW-38			Matrix:Water		Collected: 09/24/0	4 09:50
Determination of Conventional Chem				1446	00/00/04 10 04	
Chemical Oxygen Demand	16 mg/l	10	EPA 410.4	MAQ	09/28/04 13:24	•
Chloride	30 mg/l	10	EPA 9252	MAQ	09/28/04 12:35	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04 11:33	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV		
Total Organic Halogens (TOX)	0.015 mg/l	0.010	EPA 9020	TVK	10/07/04 0:00	
Determination of Dissolved Metals	•					
Iron, dissolved	6:229 mg/l	0.030	EPA 6010B	LAR	09/29/04 16:5/7	
14I1124-06 MW-41			Matrix:Water		Collected: 09/24/0	4 12:45
Determination of Conventional Chem	istry Parameters					
Chemical Oxygen Demand	12 mg/l	10	EPA 410.4	MAQ		
Chloride	€14 mg/l	10	EPA 9252	MAQ		
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA		
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV		
Total Organic Halogens (TOX)	<0.010 mg/l	0.010	EPA 9020	TVK	10/07/04 0:00	
Determination of Dissolved Metals.			E73 (0107)	7 4 10	09/29/04 17:01	
Iron, dissolved	1.10 mg/l	0.030	EPA 6010B	LAR		
14I1124-07 SW-1	_		Matrix:Water		Collected: 09/24/	04 15:05
Determination of Conventional Chem	nistry Parameters	40	EDA 410 4	N440	00/20/04 12:24	
Chemical Oxygen Demand	14 mg/l	10	EPA 410.4	MAQ		
Chloride	111 mg/l	10	EPA 9252	MAQ		
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA		
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV	•	
Total Organic Halogens (TOX)	0.046 mg/l	0.010	EPA 9020	TVK	10/07/04 0:00	
Determination of Dissolved Metals					00/00/01 15 00	
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	LAR	09/29/04 17:06	•

Work Order: 14I1124

October 12, 2004

Page 3 of 4

Analyte	Result	MRL	Method			Qualifier
1411124-08 SW-2 7DW			Matrix:Water		Collected: 09/24/04	15:20
Determination of Conventional Chemis	try Parameters					
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	MAQ	09/28/04 14:17	
Chloride	138 mg/l	10	EPA 9252	MAQ	09/28/04 12:35	
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04 11:34	
Phenols, total	<0.100 mg/l	0.100	EPA 9065	KRV	09/30/04 10:53	
Total Organic Halogens (TOX)	0.044 mg/l	0.010	EPA 9020	TVK	10/07/04 0:00	
Determination of Dissolved Metals						
Iron, dissolved	0.036 mg/l	0.030	EPA 6010B	LAR	09/29/04 17:18	
14I1124-09 MW-30			Matrix:Water		Collected: 09/25/04	11:45
Determination of Conventional Chemis	stry Parameters	1. ·				
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	MAQ	09/28/04 14:17	
Chloride	€10 mg/l	10	EPA 9252	MAQ	09/28/04 12:35	
Nitrogen, Ammonia	<1::0 mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04 11:34	
Phenols, total	<0,100 mg/l	0.100	EPA 9065	KRV	09/30/04 10:53	•
Total Organic Halogens (TOX)	<0.010 mg/l	0.010	EPA 9020	TVK	10/07/04 0:00	į.
Determination of Dissolved Metals		0.000	770 A CO1070	TAD	09/29/04 17:22	j.
Iron, dissolved	0.454 mg/l	0.030	EPA 6010B	LAR	09/29/04 17.22	
1411124-10 MW-23			Matrix:Water		Collected: 09/25/0	4 11:30
Determination of Conventional Chemi	stry Parameters		TD 4 410 4	1440	09/28/04 14:17	
Chemical Oxygen Demand	″17 mg/l	10	EPA 410.4	MAQ MAQ	09/28/04 14:17	
Chloride	15 mg/l		EPA 9252	SAA	09/28/04 11:34	
Nitrogen, Ammonia	≤1.0 mg/l	1.0	SM 4500-NH3 F	KRV	09/30/04 10:53	
Phenols, total	<0.100 mg/l		EPA 9065		10/07/04 0:00	
Total Organic Halogens (TOX)	0.047 mg/l	0.010	EPA 9020	TVK	10/0//04 0.00	
Determination of Dissolved Metals	an ann mad	c nań	TDA (010D	LAR	09/29/04 17:26	
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	132 333		
1411124-11 MW-31			Matrix: Water		Collected: 09/25/0	4 12:05
Determination of Conventional Chem			ED 4 410 4	3440	00/00/04 14:17	
Chemical Oxygen Demand	30 mg/l		EPA 410.4	MAQ		•
Chloride	35° mg/l		EPA 9252	MAQ	09/28/04 12:33	
Nitrogen, Ammonia	<1.0 mg/l		SM 4500-NH3 F	SAA		
Phenols, total	<0.100 mg/l		EPA 9065	KRV		
Total Organic Halogens (TOX)	0.401 mg/l	0.010	EPA 9020	TVK	10/08/04 0:00	
Determination of Dissolved Metals				1 4 0	00/20/04 17:25	
Iron, dissolved	3.51 mg/l	0.030	EPA 6010B	LAR	09/29/04 17:35	

Work Order: 14I1124

October 12, 2004

Page 4 of 4

Analyte	Result	MRL	Method	Analyst	Analyzed	Qualifier
14I1124-12 SW-6			Matrix:Water	(Collected: 09/25/0	4 12:45
Determination of Conventional Chemi	istry Parameters					
Chemical Oxygen Demand	23 mg/l	10	EPA 410.4	MAQ	09/28/04 14:17	
Chloride	. 76 mg/l	10	EPA 9252	MAQ	09/28/04 12:35	
Nitrogen, Ammonia	<1:0 mg/l	1.0	SM 4500-NH3 F	SAA	09/28/04 11:34	
Phenois, total	<0:100 mg/l	0.100	EPA 9065	SNT	09/30/04 12:33	
Total Organic Halogens (TOX)	0:040 mg/l	0.010	EPA 9020	TVK	10/08/04 0:00	
Determination of Dissolved Metals						
Iron, dissolved	4.76 mg/l	0.030	EPA 6010B	LAR	09/29/04 17:47	

End of Report

Keystone Laboratories, Inc. Jim Eggers For Jeffrey King, Ph.D.

Laboratory Director

CUSTODY

☐ 600 E. 17th St. S. Newton, IA 50208

3012 Ansborough Ave. Waterloo, IA 50701

1304 Adams
Kansas City, KS 66103

KIE GO KU

		Relinquished by: (Signature)	Kark Frame	Relinquished by: (Signature)	Sw 3	500 1	mw 41	mw 38	mw 36	mu 40	be ma	mu 37 9/24	CLIENT SAMPLE NUMBER	PHONE:	CITY/ST/ZIP:	ADDRESS:	SITE NAME: Am +5	PRINT OR TYPE INFORMATION BELOW	LABORATORIES,
	Time	Date	Time	Days 64/04	1 320 Pm	305Pm W/7	1 MASHE!	95CA977	2305m	133cPp	1010977	JOH 246ANDO	TIME				(610	Miles p.	9. I
Original - Return with Report	J.	Received for Lab by: (Signature)		Received by: (Signature)	11	LAID WINTED 1	141	300	36	1 40	39	notaring Chell37	SAMPLE LOCATION	FAX:	- PHONE KM	ADDRESS:	COMPANY NAME:	REPORT TO: NAME:	Phone: 641-792-8451 Fax: 641-792-7989
Yellow - Lab Copy Pink - Sa	1/2	ure) Date Remarks:	Time	Date Tum-Arouper								SINVXX	NO. OF CONTAINERS MATRIX GRAB/COMPOSITE NALYSEE		515-290-669	2m2(Fax "	Il physple	Phone: 319-235-4440 Fax: 319-235-2480 www.keystonelabs.com
Pink - Sampler Copy	4014 H/4101	June 5/2/4 (3)		Trid Bush									LABORATORY WORK ORDER NO. LABORATORY WORK ORDER NO. 4 I 4 I 5 MMPLE TEMPERATURE UPON RECEIPT: C SAMPLE CONDITION/COMMENTS	Keystone Quote No.:	PHONE:	CITY/ST/ZIP: 1770 °S,	COMPANY NAME: HOP	NAME: MR B.	Fax: 913-321-7937
	FORM: CCB 7-97	Sallo	Contact Lab Prior to Submission		2.3	00	06	0 7	1,00	7	40	0/	ORDER NO. ORDER NO. ORDER NO. ORDER NO. LABORATORY SAMPLE SAM	(If Applicable)		117 5	かならの	11 Feder	PAGEOF

C n A 1 N U r k c C u R u

LABORATORIES, INC.

Newton, IA 50208 Phone: 641-792-8451 Fax: 641-792-7989

3012 Ansborough Ave. Waterloo, IA 50701 Phone: 319-235-4440 Fax: 319-235-2480

1304 Adams
Kansas City, KS 66103
Phone: 913-321-7856
Fax: 913-321-7937

PAGE. S S

		Relinquished by: (Signature)	Kah Sreema	Relinquished by: (Signature)	E 6	mw 31	inw23 /	mu 30 %51	CLIENT SAMPLE NUMBER	PHONE:	PRINT OR TYPE INFORMATION BELOW SAMPLER: The second of the
Ori	Time	Date	Time	Day 25/04 Rec	Who weeks	1305 Am	1130Am	of 114(Am Ma.20	TIME		of Farmer
Original - Return with Report •	The state of the s	Received for Lab by: (Signature)		Received by: (Signature)	Ger Water Co	181	23	bring 6/1/ 30	SAMPLE LOCATION	FAX:	REPORT TO: NAME: COMPANY NAME: ADDRESS: CITY/ST/ZIP: PHONE:
Yellow - Lab Copy •	Time 18:35 A M	e) Date $\frac{Q}{Q} = \frac{Q}{2} = \frac{Q}{2$	Time	Date			XX	XXX	MATRIX GRAB/COMPOSITE 11		20-062-515 1643 XQ
Pink - Sampler Copy	KALI	Remarks // -> //- /- S		Turn-Around:					ANALYSES REQUIRED	Keystone Quote No.:	93 10
	11/11/67	Sample		Rush Rush					LABORATORY WORK ORDER NO. 4	≀uote No∷(lf Applicable)	NAME POR BOX
	FORM: CCR 7-97		Contact Lab Prior to Submission		1	3	10	40	IO. LABORATORY SAMPLE NUMBER	cable)	11 Palds 2483 50010

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

October 14, 2004

Page 1 of 3

Work Order: 14I1254

Report To:

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Project: Ames/Story C&D SLF

Project Number: [none]

ind to		siin kun namaun kulos saakaus kuus kun kun kun kun kun kan kan kun kun kun kun kun kun kun kun kun ku
W	ork Order Inforn	
HWIN.Wo	Date Received:	09/29/2004 10:30AM
		Freeman, Richard
		515-233-0000
	PO Number:	•

Analyte	Re	sult	MRL	Method		Analyzed Qualifier
4I1254-01 MW-32				Matrix:Water		Collected: 09/28/04 08:30
Determination of Conventional Chemi	stry Parame	ters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	MAQ	10/01/04 15:46
Chloride	15	mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Vitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	09/29/04 15:46
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)	0.010	mg/l	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals	-					
ron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:18
4I1254-02 MW-33				Matrix:Water		Collected: 09/28/04 09:00
Determination of Conventional Chemi	istry Param	eters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	MAQ	10/01/04 15:46
Chloride	51	mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Nitrogen, Ammonia	2.2	mg/l	1.0	SM 4500-NH3 F	SAA	09/29/04 15:46
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)	0.034	mg/l	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals						00/00/04 15 21
Iron, dissolved	2.56	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:31
14I1254-03 MW-25		,		Matrix:Water		Collected: 09/28/04 08:50
Determination of Conventional Chem	istry Param	eters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	MAQ	10/01/04 15:42
Chloride		mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	10/01/04 11:29
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)	0.034	mg/l	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals		_				00/00/04 15:25
Iron, dissolved	0.034	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:35
14I1254-04 MW-34				Matrix: Water		Collected: 09/28/94 10:05

Determination of Conventional Chemistry Parameters

Work Order: 14I1254

October 14, 2004

Page	2	of	3	
				_

Analyte	Res	ult	MRL	Method	Analyst	Analyzed Qualifier
14I1254-04 MW-34				Matrix: Water		Collected: 09/28/04 10:05
Determination of Conventional Chemist	try Paramei	ters				
Chemical Oxygen Demand	21	mg/l	10	EPA 410.4	MAQ	10/01/04 15:42
Chloride	21	mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Nitrogen, Ammonia	1.0	mg/l	1.0	SM 4500-NH3 F	SAA	10/01/04 11:29
Phenols, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)	0.012	mg/l	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals						00/00/04 15 00
Iron, dissolved	0.390	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:39
14I1254-05 MW-35				Matrix:Water		Collected: 09/28/04 10:15
Determination of Conventional Chemis	try Parame	ters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	MAQ	10/01/04 15:42
Chloride	114	mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	10/01/04 11:29
Phenois, total	< 0.100	mg/l	0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)	0.029	mg/l	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals						00/00/04 15 44
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:44
14I1254-06 MW-42				Matrix:Water		Collected: 09/28/04 09:25
Determination of Conventional Chemis	stry Parame	eters				•
Chemical Oxygen Demand	14	mg/l	10	EPA 410.4	MAQ	10/01/04 15:42
Chloride		mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	10/01/04 11:29
Phenols, total	< 0.100	-	0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)	0.012	_	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals						•
Iron, dissolved	1.94	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:48
14I1254-07 MW-43				Matrix:Water		Collected: 09/28/04 09:40
Determination of Conventional Chemi	istry Param	eters				
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	MAQ	10/01/04 15:42
Chloride		mg/l	10	EPA 9252	MAQ	10/01/04 14:26
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	10/01/04 11:29
Phenols, total	<0.100		0.100	EPA 9065	KRV	09/30/04 15:55
Total Organic Halogens (TOX)		mg/l	0.010	EPA 9020	TVK	10/12/04 0:00
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	09/30/04 15:52

Work Order: 14I1254

October 14, 2004

Page 3 of 3

End of Report

Keystone Laboratories, Inc. Jim Eggers For Jeffrey King, Ph.D. Laboratory Director

CHAIN OF CUSTODY RECURD

LABORATORIES, INC.

600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-8451 Fax: 641-792-7989 Phone: 319-235-4440 Fax: 319-235-2480 3012 Ansborough Ave. Waterloo, IA 50701 Kansas City, KS 66103 Phone: 913-321-7856 1304 Adams

PAGE_/_OF__/

LABORATORIES, INC. Fax:	Fax: 641-792-7989 Fax: 319-235-2480 Fax	Fax: 913-321-7937
PRINT OR TYPE INFORMATION BELOW REPORT	REPORT TO:	NAME: MR Bill Fadelal
STE NAME: Amil (&)	COMPANY NAME: Fax Ema	COMPANY NAME: HMIS CE
	ADDRESS:	٩l
ADDRESS:	CITY/STIZIP: Ann	CITY/STIZIP: HODES 18 SCOLO
CITY/ST/ZIP:	PHONE: KMF 515-290-6693	PHONE:
PHONE:	FAX:	Keystone Quote No.:

	11/1/20	hold	Time	1200		Time		
7	s Jamp 1 s	Remarks: M	9/29/84	Received for Lab by: (Signature)	Received for L	Date	ıre)	Relinquished by: (Signature)
Contact Lab Prior to Submission			Time			Time And	Lemma	Cours of Fre
	Rush	Turn-Arednd:	Date	Signature)	Received by: (Signature)	Day /28/04	\re \	Relinquished by: (Signature)
			-				,	
(7)		2		1 43 /		JAO BON	\	MW 43
40				92		925AM		mu 42
(15.7				135		1015 April		mw 35
000				34		1605 Apr		me sy
03				25		CMASSB		mw25
60				33		90000	<u></u>	MW 33
(0)			のアメメ	bull325	Menotoring	530AM /	Poloy	mw 32
LABORATORY SAMPLE NUMBER	LAB USE ONLY LABORATORY WORK ORDER NO. 41 41 5 5 SAMPLE TEMPERATURE UPON RECEIPT: C	VALYSES REQUIRED	GRAB/COMPOSITE	NO. OF CONTAINERS	SAMPLE LOCATION	TIME	DATE	CLIENT SAMPLE NUMBER

FORM: CCR 7-97

Accreditations: Iowa DNR: 095 New Jersey DEP: 1A001

ANALYTICAL REPORT

October 19, 2004

Page 1 of 3

TOWNSHIP

Kansas DHE: E-10287

Work Order: 14I1126

Report To

Iron, dissolved

Todd Whipple Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Project: Landfill

Project Number: Ames SEF STORY CED

Work Order Information

Date Received: 09/27/2004 10:55AM

LAR 09/29/04 18:08

Collector: Freeman Phone: 515-233-0000

PO Number:

Analyte	Result	MRL	Batch	Method	Analyst .	Analyzed Qualifi
411126-01 MW # 28				Matrix:Water	С	ollected: 09/24/04 13:10
Determination of Conventional (Thomistm, Paramet	ort				
Chemical Oxygen Demand	17 mg/l	10	1142806	EPA 410.4	MAQ	09/28/04 14:17
	100 mg/l	10	1142810	EPA 9252	MAQ	09/28/04 12:35
Chloride	<1.0 mg/l	1.0	1142809	SM 4500-NH3 F	SAA	09/28/04 11:34
Nitrogen, Ammonia	<0.100 mg/l	0.100	1142936	EPA 9065	SNT	09/30/04 12:33
Phenols, total Total Organic Halogens (TOX)	0.030 mg/l	0.100	1J41120	EPA 9020	TVK	10/07/04 0:00
Total Of Ballie Halogons (1 011)						
Determination of Dissolved Met				77 4 CO 107	T 45	00/00/04 17:51
Iron, dissolved	<0.030 mg/l	0.030	1142919	EPA 6010B	LAR	09/29/04 17:51
14I1126-02 MW 会 29				Matrix:Water	C	Collected: 09/24/04 14:10
Determination of Conventional	Chemistry Parame	ters				
Chemical Oxygen Demand	<10 mg/l	10	1142806	EPA 410.4	MAQ	09/28/04 14:17
Chloride	<10 mg/l	10	1142810	EPA 9252	MAQ	09/28/04 12:35
Nitrogen, Ammonia	<1.0 mg/l	1.0	1142809	SM 4500-NH3 F	SAA	09/28/04 11:34
Phenols, total	<0.100 mg/l	0.100	1142936	EPA 9065	SNT	09/30/04 12:33
Total Organic Halogens (TOX)	0.014 mg/l	0.010	1J41120	EPA 9020	TVK	10/07/04 0:00
Determination of Dissolved Me	tals					
Iron, dissolved	0.034 mg/l	0.030	1142919	EPA 6010B	LAR	09/29/04 17:55
1411126-03 MW 6				Matrix: Water	(Collected: 09/24/04 08:30
Determination of Conventional	Chemistry Parame	eters				
Chemical Oxygen Demand	<10 mg/l		1142806	EPA 410.4	MAQ	
Chloride	56 mg/l	10	1142810	EPA 9252	MAQ	
Nitrogen, Ammonia	<1.0 mg/l	1.0	1142809	SM 4500-NH3 F	SAA	09/28/04 11:34
Phenols, total	<0.100 mg/l	0.100	1142936	EPA 9065	SNT	09/30/04 12:33
Total Organic Halogens (TOX)	0.074 mg/l	0.010	1J41120	EPA 9020	TVK	10/07/04 0:00
Determination of Dissolved Me	etals					
Determination of Dissorred me	*******					00/00/04 10 00

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

1142919

0.030

<0.030 mg/l

EPA 6010B

Work Order: 14I1126

October 19, 2004 Page 2 of 3

Analyte	Result	MRL	Batch	Method	Analyst A	nalyzed Qualifie
4I1126-03 MW 6				Matrix:Water	Col	lected: 09/24/04 08:30
411126-04 MW 7				Matrix:Water	Col	llected: 09/24/04 09:10
Determination of Conventional	Chemistry Parame	ters		•		
Chemical Oxygen Demand	<10 mg/l	10	1142806	EPA 410.4	MAQ	09/28/04 14:17
Chloride	14 mg/l	10	1142810	EPA 9252	MAQ	09/28/04 12:35
Nitrogen, Ammonia	<1.0 mg/l	1.0	1142809	SM 4500-NH3 F	SAA	09/28/04 11:34
Phenols, total	<0.100 mg/l	0.100	1142936	EPA 9065	SNT	09/30/04 12:33
Total Organic Halogens (TOX)	0.013 mg/l	0.010	1J41132	EPA 9020	TVK	10/08/04 0:00
Determination of Dissolved Me	tals					
Iron, dissolved	0.267 mg/l	0.030	1142919	EPA 6010B	LAR	09/29/04 18:12
14I1126-05 MW 8				Matrix:Water	Co	llected: 09/24/04 09:30
Determination of Conventional	Chemistry Parame	ters				
Chemical Oxygen Demand	10 mg/l	10	1142806	EPA 410.4	MAQ	09/28/04 14:17
Chloride	<10 mg/l	10	1142810	EPA 9252	MAQ	09/28/04 12:35
Nitrogen, Ammonia	<1.0 mg/1	1.0	1142809	SM 4500-NH3 F	SAA	09/28/04 11:34
Phenols, total	< 0.100 mg/l	0.100	1142936	EPA 9065	SNT	09/30/04 12:33
Total Organic Halogens (TOX)	<0.010 mg/l	0.010	1J41132	EPA 9020	TVK	10/08/04 0:00
Determination of Dissolved Me	tals					

Work Order: 14I1126	Page 3 of 3

End of Report

Keystone Laboratories, Inc.

Jeffrey King, Ph.D. Laboratory Director

CHAIN	☐ 600 E. 17 th St. Newton, IA 50 Phone: 641-79 Fax: 641-79	
	[feystone	LABORATORIES, INC.

www.keystonelabs.com OFCUSTODY TaX: 92-7989 92-8451 0208

1304 Adams	Kansas City, I	Phone: 913-3
n Ave.	701	-4440

sas City, KS 66103		913-321-7937
Kansas	Phone:	Fax.

	l
0F	
PAGE	
	,

	-	PAGE / OF	
KS 66103	321-7856	321-7937	

Mill

BILL TO:

Works Mine	ONLY O. LABORATORY SAMPLE NUMBER	A Secretary of the second
IAME: Josh C	LAB USE ONLY LABORATORY WORK ORDER NO. SAMPLE TEMPERATURE UPON RECEIPT: "C S S S S S S S S S S S S S S S S S S S	Bush
DAME: NAME: COMPANY NAME: ADDRESS: CITY/ST/ZIP: PHONE: Keystone Quote No	ANALYSES REQUIRED	Tum-Around:
404 End.	MATRIX MO. OF CONTAINERS MATRIX GRAB/COMPOSITE	Date
NAME: COMPANY NAME: ADDRESS: CITY/ST/ZIP: PHONE: ADDRESS: FAX:	SAMPLE LOCATION When the control of	Received by: (Signature)
A BELOW OF STATES	30 PATE (10 PATE) (10 PATE	e) Date 4/4 4
PRINT OR TYPE INFORMATION BELOW SAMPLER: SITE NAME: ADDRESS: CITY/ST/ZIP: PHONE:	CLIENT SAMPLE NUMBER MW 4 MW C MW	Relinquished by: (Signature)

FORM: CCR 7-97

Pink - Sampler Copy

Yellow - Lab Copy

Original - Return with Report

Remarks:

Date

Received for Lab by: (Signature)

Time

Relinquished by: (Signature)

Lime Date

Time

Contact Lab Prior to Submission

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85-	SDP - 13	-91P			
Monitoring	Well/Piezometer No	MW-6	Upgradient						
Name of pe	rson sampling	RICHARD FRE	Downgradle Downgradle	IIL .					
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS						
	Well/Piezomete	ater or Litter?	No						
•	B.) GROUNDWAT	ER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)					
	Elevation: Top Depth of Well Equipment Us		Inside Casing Diam		1 940.65 hes) 2.0"	-			
	Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):								
		Date/Time	Depth to Groundwate	or	Groundwater Elevation				
	Before Purging *After Purging *Before Sampling	9/23/04 9/2 4 /04 8:30	\frac{\&\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}{2\cdot\}{2\cdot\}{2\cdot\} \frac{\&\cdot\}{2\cdot\}						
	C.) WELL PURGI	NG .							
	No.of Well Vo	ater Removed from Wolumes (based on curr hped/bailed dry?		- :					
	Equipment us Bailer ty Pump ty If not de	/pe	'Dedica	ted Bailer ted Bailer					
	D.) FIELD MEAS	UREMENT							
	Field Measuri Tempera			OCKET	PAL				
	pHEc Specific Con	ري quipment Used 44 ditions /673	ACH COMPANY Units HACH COMPAN		T PAL				
	Comments								
	NOTE: Attach	Laboratory Report an	nd 8-12" x 11" site plan pints. One map per sam	showing loo apling round	ations of all su	rface and			
	*Omit if only mea	suring groundwater el	evations.						

Site Name Ame	S-STORY	Environmental	LANDFILLPermit No.	<u>85-</u>	SDP-	13-91P
Monitoring Well/P	eiezometer No	. MW-7	Upgradient			
Name of person s	sampling	RICHARD FRE	EMAN Downgradie	nt		
A.) N	MONITORING	WELL/PIEZOMETER	CONDITIONS			•
	ell/Piezomete no, exp <u>lain</u>	r Properly Capped? _	YES	Standing V If yes, expl	Vater or Litt a <u>in</u>	ter? No
B.) (ROUNDWAT	ER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us	of inner well casing 53' sed 50LINST	943·21 Grour Inside Casing Diam		n <u>940</u> hes) z.a	
	Gro	oundwater Level (+/- 0	.01 foot below top of in	ner casing,	MSL):	
		Date/Time	Depth to Groundwate	r	Groundwa Elevation	
*Afte	re Purging r Purging ore Sampling	9/23/04	22-7 51:0 22-7			· ·
C.) \	WELL PURGII	NG				
	No.of Well Vo	ater Removed from Wilumes (based on curraped/bailed dry?				
	Pump ty	pe DVC	'Dedica	ted Bailer ted Bailer		
D.)	FIELD MEASU	JREMENT				
	Tempera Eq pHEq Specific Cond	nents (after stabilization ture /5 uipment Used HAC 7.8 uipment Used HAC	Units	POCKET	TAL TAL	FL.
Cor	nments					
			d 8-12" x 11" site plan s ints. One map per sam			ill surface and
* On	nit if only meas	suring groundwater ele	evations.			

Site Name	AMES-STORY	Environmental	LANDFILLPermit No.	<u>85-</u>	SDP - 13	-91P
Monitoring '	Well/Piezometer No	. <u>MW-8</u>	Upgradien Downgrad			
Name of pe	rson sampling	RICHARD FRE		io <u>rn</u>		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezometel	Properly Capped?	YES	_ Standing V _ If yes, expl	Vater or Litter? a <u>in</u>	No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREMENT (+/- 0.0	1 foot, MSL)		
	Elevation: Top Depth of Well Equipment Us		942.76 Gro Inside Casing Dia	und Elevatio ameter (in ind		<i>5</i>
	Gro	oundwater Level (+/- 0	.01 foot below top of	inner casing,	MSL):	
		Date/Time	Depth to Groundwa	ter	Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	9/23/64 9:3	35·20 49·0 0 35·2	 		
	C.) WELL PURGI	NG				
	No.of Well Vo	ater Removed from W lumes (based on curr ped/bailed dry?	Vell (gallons) 10 ent water level) 2 No			
	Equipment us Bailer ty Pump ty If not de	pe /VV	'Dedi	cated Bailer cated Bailer		
	D.) FIELD MEAS	UREMENT				
	Tempera Eq pH Eq Specific Con	ditions Cloudy nents (after stabilizations) ture 14 uipment Used Had uipment Used Had ditions 774 uipment Used	CO-75° Units CH COMPANY CH COMPANY Units TACLT COMPA	POCKET POCKE	FAL T FAL XET FA	
	Comments					
٠	NOTE: Attach grou	Laboratory Report ar ndwater monitoring po	nd 8-12" x 11" site pla pints. One map per sa	n showing lo ampling roun	cations of all s d.	urface and

Site Name	AMES-STORY	Environmental	LANDFILLPermit No.	<u>85-</u>	SDP-1	3-91P
Monitoring	Well/Piezometer No.	MW-23				
vame of pe	erson sampling	RICHARD FRE	Eman Downgradie	oni v		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer If no, explain	Properly Capped?	YES	Standing V If yes, exp	Vater or Litte la <u>in</u>	7 No
	B.) GROUNDWATE	R ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL))	`
	Elevation: Top Depth of Well Equipment Use	of inner well casing 27.86	945.98 Grou Inside Casing Dian	nd Elevationeter (in inc		
*	Grou	ındwater Level (+/- 0	.01 foot below top of in	ner casing	, MSL):	
		Date/Time	Depth to Groundwate	er er	Groundwat Elevation	er
	Before Purging *After Purging *Before Sampling	9 25 64 9 25 04 ji 3	17:7 20:6 20:5			- - -
	C.) WELL PURGIN	G .		٠		
		ter Removed from W umes (based on curr bed/bailed dry?				
	Equipment use Bailer typ Pump typ If not dec	e PVC	'Dedica	ated Bailer ated Bailer		
	Temperat Equ pH Equ Specific Cond	tions Cloudy ents (after stabilizations ure	CH COMPANY FACH COMPANY TACH COMPANY Units TACH COMPANY Units	POCKET POCKE	PAL TPAL	H_
	Comments	<u> </u>				
			nd 8-12" x 11" site plan pints. One map per san			surface and

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No.	<u>85-</u>	SDP-	13-91P		
Monitoring '	Well/Piezometer No	. <u>MW-24</u>		Upgradient Downgradie	nt ./				
Name of pe	rson şampling	RICHARD FRE	EMAN	- -	(IL V	٠,	7. 1.1.1.		
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS					
	Well/Piezomete If no, exp <u>lain</u>	Properly Capped?	YES		Standing V If yes, expl	Vater or Litte a <u>in</u>	er? No		
	B.) GROUNDWATER ELEVATION MEASUREMENT (+/- 0.01 foot, MSL)								
	Elevation: Top Depth of Well Equipment Us		939.4 Inside	44 Grour Casing Diam	nd Elevation neter (in inc	n 936. :hes) z.c	94		
	Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):								
	Before Purging *After Purging *Before Sampling	Date/Time 9/27/64		Depth to Groundwate	r	Groundwa Elevation	eter		
	C.) WELL PURGING								
	Quantity of Water Removed from Well (gallons) No.of Well Volumes (based on current water level) Was well pumped/bailed dry?								
. •	Equipment us Bailer ty Pump ty If not de	pe <u></u> <u></u>		'Dedica	ted Bailer ted Bailer				
	D.) FIELD MEASU	JREMENT				•			
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture uipment Used HAC uipment Used HA litions	H CON	Units Day Po Dupany Units Company		FAL T PAL XET F	}		
	Comments								
	NOTE: Attach groui	Laboratory Report and advater monitoring po	d 8-12" x ints. One	11" site plan s map per sam	showing loo pling round	cations of al	I surface and		

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85- SD	P-13-91P
Monitoring	Well/Piezometer No	. MW-25	Upgradient		
Name of pe	erson sampling	RICHARD FRE	Emal Downgradier		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS		•
	Well/Piezomete If no, explain	r Properly Capped?_	YES !	Standing Water f yes, expla <u>in</u>	or Litter? No
	B.) GROUNDWAT	TER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)	
	Elevation: Top Depth of Well Equipment Us		Inside Casing Diam		903.94
	Gro	oundwater Level (+/- 0	.01 foot below top of inr	ner casing, MSL):
		Date/Time	Depth to Groundwater		undwater vation
	Before Purging *After Purging *Before Sampling	9/27/04 9/28/04 815	9.6 10.0 3An 9.6		
	C.) WELL PURGI	NG			
	No.of Well Vo	/ater Removed from Wolumes (based on curr nped/bailed dry?	/ell (gallons) (0 ent water level) 2		
	Equipment us Bailer to Pump to If not de	pe PVC	'Dedicat	ted Bailer	
	D.) FIELD MEAS	UREMENT			
	Tempera Ec pH Ec Specific Con	ments (after stabilization ature 15 quipment Used HAC 7'O	on):	POCKET	PAL PAL
	Comments	<u></u>			
			nd 8-12" x 11" site plan s pints. One map per sam		s of all surface and

Site Name	AMES-STORY &	invironmental	LANDEIL	Permit No.	<u>85-</u>	SDP - 13	3-91P
Monitoring \	Well/Piezometer No.	MW-28		Upgradient _ Downgradie			
Name of pe	rson sampling	RICHARD FRE	EMAN	- Downstanie			
	A.) MONITORING V	VELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?	YES		Standing W If yes, expla	ater or Litter	No
	B.) GROUNDWATE	R ELEVATION MEA	SUREM	ENT (+/- 0.01	foot, MSL)		
	Depth of Well	of inner well casing of ZZ.7	946.0 Inside	Casing Diam	nd Elevation neter (in incl	942 nes) z.o	
	Grou	ndwater Level (+/- 0.	.01 foot b	elow top of in	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	г	Groundwate Elevation	г
	Before Purging *After Purging *Before Sampling	9/24/04 9/24/04 1:10		7·75 17·0 7·75			
	C.) WELL PURGING	3					
	No.of Well Volu	ter Removed from Wilmes (based on curro ed/bailed dry?	ell (gallor ent water	level) 3			
	Equipment use Bailer typ Pump typ If not ded	e PVC	eaning	-	ted Bailer ted Bailer	<u> </u>	
	D.) FIELD MEASU	REMENT					
	Temperatu Equ pH Equ Specific Condi	ents (after stabilization in the stabilization in t	on): CH Con	_ Units	POCKET	PAL F PAL XET PA	
	Comments	<u> </u>					
		aboratory Report an Iwater monitoring po					urface and
	*Omit if only measu	ring groundwater ele	evations.				

	AMES-STORY ENVIOLENT	uronmented MW-Z9	LANDFIL	≟Permit No Upgradient	<u> ୫</u> 5-	SDP-	13-91P
Normorning vi				Downgradier	nt 🗸		
lame of pers	son sampling ${\mathcal R}$	ichard Fre	EMAN	-			
P	A.) MONITORING WE	L/PIEZOMETER	CONDIT	TIONS			
	Well/Piezometer Pro If no, explain	perly Capped?	YES_		Standing V f yes, exp	Vater or Litt la <u>in</u>	er? No
E	B.) GROUNDWATER	ELEVATION MEA	SUREM	ENT (+/- 0.01 (foot, MSL)		
	Elevation: Top of in Depth of Well Equipment Used	ner well casing 53 · S 50 LI NG	Inside	ام Groun Casing Diam	d Elevatio eter (in ind	n 942. ches) z.c	5 5
	Ground	vater Level (+/- 0.	.01 foot b	elow top of inr	ner casing	, MSL):	
		Date/Time		Depth to Groundwater	r .	Groundwa Elevation	
•	Before Purging *After Purging *Before Sampling	9/24/04 2110)	13·2 45·0 19·0			
. (C.) WELL PURGING	7 -7 1					
·	Quantity of Water No.of Well Volume Was well pumped	s (based on curre	ell (gallor ent water	ns) 1 level)			
	Equipment used: Bailer type Pump type If not dedica	Ed, method of cle	eaning		ted Bailer ted Bailer		
	D.) FIELD MEASURE	MENT					
	pH Equipm Specific Condition	s (after stabilization 1.7 ent Used HAC 7.7 ent Used HAC	on):	Units Leave Pary Outpary Units Compary	POCKET	PAL T PAL	A L
	Comments						
	NOTE: Attach Lab		d B-12" x	11" site plan s			ill surface and

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	<u>85-</u>	SDP-13-	91P
Monitoring '	Well/Piezometer No	MW-30	Upgradient		······································	
Name of pe	erson sampling	RICHARD FRE	Downgradie	ent V		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezomete	r Properly Capped?	YES	Standing V	Vater or Litter? Nain	0
	B.) GROUNDWAT	ER ELEVATION ME	ASUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us		Inside Casing Diar	nd Elevation meter (in inc		
	Gro	oundwater Level (+/- 0	.01 foot below top of ir	nner casing,	MSL):	
	Before Purging *After Purging *Before Sampling	Date/Time	Depth to Groundwate 37 - S 53'0 46.0	er	Groundwater Elevation	
	C.) WELL PURGI	112-73-1				
	No.of Well Vo	olumes (based on curr	Vell (gallons) 10 ent water level) 2.5	- · · · · · · · · · · · · · · · · · · ·		
	Equipment us Bailer ty Pump ty If not de	rpe tvc	'Dedica	ated Bailer ated Bailer		
	D.) FIELD MEASI	UREMENT				
	Field Measurr Tempera Eq pH Eq Specific Con	uipment Used HA 7'5 Juipment Used HA	(00-75° on): Units CH COMPANY F ACH COMPANY Units HACH COMPAN		FAL T FAL XET FAL	
	Comments	<u></u>				
	NOTE: Attach grou	Laboratory Report ar	nd 8-12" x 11" site plan pints. One map per sar	showing loo npling round	cations of all surfa	ace and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85- SDP-	13-91P
Monitoring '	Well/Piezometer No.	MW-31	Upgradient Downgradie		
Name of pe	erson sampling	RICHARD FRE			
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS		•
	Well/Piezometer If no, explain	Properly Capped?_		Standing Water or Li If yes, explain	tter? No
	B.) GROUNDWATE	ER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)	
	Elevation: Top Depth of Well Equipment Use		Inside Casing Dian	nd Elevation <u></u> 938 neter (in inch <u>es) </u> 2・	3·ZI O"
	Grou	undwater Level (+/- 0	.01 foot below top of in	ner casing, MSL):	
		Date/Time	Depth to Groundwate	Groundv er Elevation	
	Before Purging *After Purging *Before Sampling	9/25/04 9/25/04	22.4 35.0 30.0		
	C.) WELL PURGIN	IG	•		
	No.of Well Vol	nter Removed from W umes (based on curr ped/bailed dry?	lell (gallons) 5 ent water level) 2		
	Equipment use Bailer typ Pump typ If not dec	pe f	'Dedica	ated Bailer	
	D.) FIELD MEASU	REMENT			
	Temperat Equ pH Equ Specific Cond	ents (after stabilization of the stabilization of t	Units	POCKET PALL TOCKET PALL TY POCKET	
	Comments	<u>.</u>			
			d 8-12" x 11" site plan pints. One map per san		all surface and

Site Name 💆	MES-STORY E	nuironmental	LANDFIL	Permit No	<u>85-</u>	SDP-	13-91P
Monitoring W	ell/Piezometer No.	MW-32	2	Upgradient			
Name of pers	son sampling	RICHARD FRE	Eman	Downgradie	nı 🔽		
A	L) MONITORING V	/ELL/PIEZOMETER	CONDIT	IONS			•
	Well/Piezometer F	Properly Capped?	YES		Standing V If yes, expl	Vater or Litte a <u>in</u>	er? No
E	3.) GROUNDWATE	R ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Use	50.5		Blo Groun Casing Diam	nd Elevatio neter (in inc	n 937. ches) z.c	
	Grou	ndwater Level (+/- 0	.01 foot b	elow top of int	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r .	Groundwa Elevation	ater
•	Before Purging After Purging Before Sampling	9/21/64 9/28/64 8:3	80	34.0 45.0 34.0			-
(No.of Well Volu	er Removed from W mes (based on curr ed/bailed dry?					
	Equipment use Bailer typ Pump typ If not ded	e PVC	eaning	_	ted Bailer ted Bailer		
I	D.) FIELD MEASUR	REMENT					
	Temperatu Equi pH Equi Specific Condi	ents (after stabilization ire 12 pment Used HAC 70 pment Used HAC	ON): CH CON	Units	POCKET POCKE	PAL IT PAL	T L
	Comments	سنور بناسمة					
		aboratory Report an Iwater monitoring po					II surface and

Site Name	AMES-STORY &	Environmental	LANDFIL	Permit No.	<u>85-</u>	SDP-	13-91P
Monitoring \	Well/Piezometer No.	MW-33		Upgradient			
Name of pe	rson sampling	RICHARD FRE	EMAN	Downgradie	nt V		
	A.) MONITORING V	VELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?	YES		Standing V If yes, exp	Vater or Litt la <u>in</u>	er? No
	B.) GROUNDWATE	R ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL))	
	Elevation: Top of Depth of Well Equipment Use	of inner well casing Z8·2	906.3 Inside	Casing Diam	nd Elevatio neter (in inc	n 904 · ches) z · c	06)"
	Grou	ndwater Level (+/- 0	.01 foot b	elow top of in	ner casing	, MSL):	
·		Date/Time		Depth to Groundwate	r	Groundwa Elevation	
	Before Purging *After Purging *Before Sampling	9/27/64 9/28/64 9:00		9.6 10.0 9.6			
	C.) WELL PURGING	G			•	•	
	No.of Well Volu	ter Removed from Williams (based on curre ed/bailed dry?	/ell (gallor ent water	level)z			
	Equipment use Bailer typ Pump typ If not ded	e rvc	eaning	_	ted Bailer ted Bailer		
	D.) FIELD MEASU	REMENT					
·	Field Measurme Temperatu Equ pH Equ Specific Condi	pment Used HAC	H CON	Units Day ONPAN Units COMPAN	BOCKET POCKE	PAL T PAL	A L
	Comments	. <u></u>	· 			 _	
		aboratory Report an Iwater monitoring po					II surface and

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No.	<u> ୫</u> 5-	SDP-	13-91	IP
Monitoring '	Well/Piezometer No	. <u>MW-3</u>	4	_Upgradient _				
Name of pe	rson sampling	RICHARD FRE	EMAN	Downgradie	nt 2		· ····································	
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS				
	Well/Piezomete If no, exp <u>lain</u>	r Properly Capped?_	YES			Vater or Litt la <u>in</u>		
	B.) GROUNDWAT	ER ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL)			
	Elevation: Top Depth of Well Equipment Us		Inside	Grour Casing Diam	nd Elevationeter (in inc	n <u>906</u> ches) z.c	·85)"	<u>—</u>
	Gro	oundwater Level (+/- 0	.01 foot b	elow top of in	ner casing	, MSL):		
		Date/Time		Depth to Groundwate	r	Groundwa Elevation	iter	
	Before Purging *After Purging *Before Sampling	9/27/64 9/28/64 10:0	05	7.8 14.0 7.8				
	C.) WELL PURGI	NG						
	No.of Well Vo	ater Removed from W lumes (based on curr sped/bailed dry? d	ent water					,
	Equipment us Bailer ty Pump ty If not de	pe PVC	eaning	_ 'Dedical _ 'Dedical	ted Bailer ted Bailer			
	D.) FIELD MEASU							
	Field Measurn Tempera Eq pH Eq Specific Cond	itions Cloudy (annents (after stabilization 18 uipment Used 14 ditions 1218 uipment Used 14 ditions 1218 uipment Used 15 ditions 15 diti	on): H Gan	_Units	POCKE	FAL T PAL XET F		
	Comments							
		Laboratory Report an					l surface a	ınd

Site Name	AMES-STORY	Environmental	LANDFIL	_Permit No.	85-	SDP-	13-91P
Monitoring	Well/Piezometer No	MW-35	5	_Upgradient			
Name of pe	erson sampling	RICHARD FRE	Eman	Downgradie	iii L		
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	ONS			
	Well/Piezometer	Properly Capped?_	YES		Standing V If yes, exp	Vater or Litt Ia <u>in</u>	er? No
	B.) GROUNDWAT	ER ELEVATION ME	ASUREM	ENT (+/- 0.01	foot, MSL)	•	
	Elevation: Top Depth of Well Equipment Us		Inside	Ground Casing Diam			04
	Gro	undwater Level (+/- 0).01 foot b	elow top of in	ner casing	, MSL):	
		Date/Time		Depth to Groundwate	or .	Groundwa Elevation	ater
	Before Purging *After Purging *Before Sampling	9/27/64 9/28/04 1	Pi 15	3'0 5'0 3'0			
;	C.) WELL PURGI	NG		Л			
	No.of Well Vo	ater Removed from V lumes (based on curr ped/bailed dry?					
	Equipment us Bailer ty Pump ty If not de	pe / V	eaning		ited Bailer ited Bailer		
	D.) FIELD MEAS	JREMENT					
	Tempera Eq pH Eq Specific Cond	nents (after stabilizati ture (6 PS uipment Used HA 7.2 uipment Used HA	CH CON	Units APANY OMETING Units Company	POCKET POCKE	PAL T PAL	\ \
-	Comments						
	NOTE: Attach	Laboratory Report ar	nd 8-12" x pints. One	11" site plan map per sam	showing lo	ocations of a	II surface and

site Name AMES-STORY ENVIronmental LANDFI	4-Permit No. 85-5DP-13-91P
Monitoring Well/Piezometer No. MW-36	Upgradient Downgradient
Name of person sampling RICHARD FREEMAN	- Downgradient
A.) MONITORING WELL/PIEZOMETER CONDIT	FIONS
Well/Piezometer Properly Capped? <u>YES</u>	Standing Water or Litter? No If yes, explain
B.) GROUNDWATER ELEVATION MEASUREM	ENT (+/- 0.01 foot, MSL)
Elevation: Top of inner well casing 948. Depth of Well 53.5 Inside Equipment Used 50-LIPST	97 Ground Elevation 947.30 e Casing Diameter (in inches) z.o"
Groundwater Level (+/- 0.01 foot b	pelow top of inner casing, MSL):
Date/Time	Depth to Groundwater Groundwater Elevation
Before Purging *After Purging *Before Sampling 9/24/04 2:30	16.5 45.0 37.0
C.) WELL PURGING	•
Quantity of Water Removed from Well (gallo No.of Well Volumes (based on current water Was well pumped/bailed dry?	ns) 10 r level) 17
Equipment used: Bailer type Pump type If not dedicated, method of cleaning	'Dedicated Bailer 'Dedicated Bailer
D.) FIELD MEASUREMENT	
Weather Conditions cloudy (00-75) Field Measurments (after stabilization): Temperature (10-10) Equipment Used HACH (10-10) Equipment Used HACH (10-10) Equipment Used HACH (10-10) Equipment Used HACH	Units MPANY POCKET FAL COMPANY FOCKET PAL Units COMPANY POCKET FAL
Comments	
NOTE: Attach Laboratory Report and 8-12" groundwater monitoring points. One	11" site plan showing locations of all surface and e map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name AMES-STORY E	nuironmental	LANDFIL	Permit No.	<u>85-</u>	SDP-	13-91P
Monitoring Well/Piezometer No.	MW-37		_Upgradient _			
Name of person sampling	RICHARD FRE	EMAN	Downgradier	ıt		
A.) MONITORING W	ELL/PIEZOMETER	CONDIT	IONS	•		
Well/Piezometer P If no, exp <u>lain</u>	roperly Capped?_	YES		Standing V f yes, expl	Vater or Litt a <u>in</u>	er? No
B.) GROUNDWATER	RELEVATION MEA	ASUREME	ENT (+/- 0.01 1	foot, MSL)		-
Elevation: Top of Depth of Well Equipment Used	finner well casing 30. Co	949.c Inside	Groun Casing Diam	d Elevatio eter (in ind	n 947. Ches) Z.C	43 >"
Groun	dwater Level (+/- 0	.D1 foot b	elow top of inr	er casing,	MSL):	
·	Date/Time		Depth to Groundwater	•	Groundwa Elevation	ater
Before Purging *After Purging *Before Sampling	9/23/04	40	8:4 8:4			-
C.) WELL PURGING						
	or Removed from W nes (based on curr ed/bailed dry?					
Equipment used Bailer type Pump type If not dedic	F V C	eaning	_	ed Bailer ed Bailer		
D.) FIELD MEASUR	EMENT					
Temperatur Equip pH Equip Specific Conditi	nts (after stabilizations) Te 19 The		Units Pony Onpany Units Company	CKET Pocke	FAL T FAL	\
Comments	<u> </u>					
	aboratory Report an water monitoring po					II surface and

Site Name	AMES-STORY E	vuironmental	LANDFIL	Permit No.	<u>85-</u>	SDP-13	3-91P
Monitoring '	Well/Piezometer No.	MW-3	8	Upgradient Downgradie	n		
Name of pe	rson sampling	RICHARD FRE	Emal	- Downgradie <u>r</u>	III. V		
	A.) MONITORING W	ELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pi	roperly Capped?_	YES		Standing W	Vater or Litter	, No
	B.) GROUNDWATER	ELEVATION MEA	ASUREME	NT (+/- 0.01	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	inner well casing 55'V 50-1125	Inside	59 Grour Casing Diam	nd Elevation neter (in inc	n <u>934.09</u> hes) Z.0"	<u> </u>
	Groun	dwater Level (+/- 0	0.01 foot b	elow top of in	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	г	Groundwate Elevation	r
•	Before Purging *After Purging *Before Sampling	9/23/04 9/29/04 9:2	50	18:68 49:0 18:7			
	C.) WELL PURGING						
	Quantity of Wate No.of Well Volun Was well pumpe	r Removed from W nes (based on curr d/bailed dry?	Vell (gallor ent water 465				
	Equipment used Bailer type Pump type If not dedic	PUC	eaning	_	ted Bailer ted Bailer		
	D.) FIELD MEASUR	EMENT					
	Field Measurmer Temperatur Equip pH Equip Specific Conditio	ment Used HA	LEO-75 ON): CH CON ACH C	_Units	POCKE POCKE	FAL T PAL XET PA	
	Comments	_	···				
	NOTE: Attach La groundy	boratory Report ar vater monitoring po	nd 8-12" x pints. One	11" site plan : map per sam	showing loo pling round	cations of all s	urface and

Site Name	AMES-STORY EN	vironmental	LANDFIL	Permit No.	85-	SDP-	13-91P
Monitoring 1	Well/Piezometer No.	MW- 39		Upgradient_		·	
vame of pe	erson sampling	RICHARD FRE	Eman	Downgradie	nı 🗸		
	A.) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pro	operly Capped?	YES		Standing W If yes, expl	/ater or Litt a <u>in</u>	er? No
	B.) GROUNDWATER	ELEVATION MEA	ASUREME	NT (+/- 0.01	foot, MSL)	•	
	Elevation: Top of Depth of Well Equipment Used	inner well casing 30.2 SOLINS		93 Grour Casing Diam	nd Elevation neter (in inc		3.96
	Ground	lwater Level (+/- 0	.01 foot b	elow top of in	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r	Groundwa Elevation	ater
·	Before Purging *After Purging *Before Sampling	9/23/4	110	16.45 76.0 16.5			
	C.) WELL PURGING						•
	Quantity of Water No.of Well Volum Was well pumped	es (based on curr					
	Equipment used: Bailer type Pump type If not dedica	PVC ated, method of cl	eaning		ted Bailer ted Bailer		
	D.) FIELD MEASURE		e)				
	pH Equip Specific Conditio	ts (after stabilizati 18 nent Used HA 7: O ment Used H ₃ ns 1588	on): CH CON	Units Pary OMPANY Units	BCKET POCKE	PAL TPAL XET T	T L
	Comments	<u> </u>	···				
	NOTE: Attach Lat	poratory Report ar					II surface and

Site Name AMES-Story Environmental LANDFILLPERMIT NO. 85-5DP-13-91F
Monitoring Well/Piezometer No. MW - 40 Upgradient
Name of person sampling RICHARD FREEMAN Downgradient
A.) MONITORING WELL/PIEZOMETER CONDITIONS
Well/Piezometer Properly Capped? <u>YES</u> Standing Water or Litter? No If no, explain If yes, explain
B.) GROUNDWATER ELEVATION MEASUREMENT (+/- 0.01 foot, MSL)
Elevation: Top of inner well casing 933.07 Ground Elevation 931.11 Depth of Well ZO' Inside Casing Diameter (in inches) Z.0" Equipment Used SUINST
Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):
Before Purging *After Purging *Before Sampling Depth to Groundwater 9:65 19:0 10:0 Groundwater Elevation
C.) WELL PURGING Quantity of Water Removed from Well (gallons) 4 No.of Well Volumes (based on current water level) 2 Was well pumped/bailed dry?
Equipment used: Bailer type Pump type If not dedicated, method of cleaning Pump type If not dedicated, method of cleaning
D.) FIELD MEASUREMENT
Weather Conditions (6004 60-75° Field Measurments (after stabilization): Temperature 18 Units Equipment Used HACH COMPANY POCKET FAL Specific Conditions (310 Units Equipment Used HACH COMPANY POCKET FAL Specific Conditions (310 Units Equipment Used HACH COMPANY POCKET FAL
Comments
NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

Site Name AMES-STORY ENVIronmental LANDE	HPermit No. 85-5D	P-13-91P
Monitoring Well/Piezometer No. MW-4/	Upgradient	
Name of person sampling RICHARD FREEMAN	Downgradient /	
A.) MONITORING WELL/PIEZOMETER COND	ITIONS	
Well/Piezometer Properly Capped? <u>YES</u> If no, explain	Standing Water If yes, expla <u>in</u>	or Litter? No
B.) GROUNDWATER ELEVATION MEASUREM	MENT (+/- 0.01 foot, MSL)	
Elevation: Top of inner well casing 933 15 Depth of Well 45 58 Inside Equipment Used 50 LINST	Ground Elevation 9 de Casing Diameter (in inches)	31·44 Z·0"
Groundwater Level (+/- 0.01 foot	below top of inner casing, MSL	-) :
Date/Time		oundwater vation
Before Purging *After Purging *Before Sampling 4/24/04	17·25 34 21·0	
C.) WELL PURGING		
Quantity of Water Removed from Well (gall No. of Well Volumes (based on current water Was well pumped/bailed dry?		
Equipment used: QC Bailer type Pump type If not dedicated, method of cleaning	'Dedicated Bailer 'Dedicated Bailer	
D.) FIELD MEASUREMENT		
Weather Conditions Cloudy (06-Field Measurments (after stabilization): Temperature (16 Equipment Used HACH Composition Figure F	Units MPANY POCKET FA Company POCKET Units Lompany Pocket	PAL
Comments		
NOTE: Attach Laboratory Report and 8-12"		ns of all surface and

Site Name	AMES-STORY	Environmental	LANDFILL	Permit No.	<u> ୫5-</u>	SDP - 13	-91P
Monitoring V	Vell/Piezometer No.	MW-42		Upgradient _ Downgradien	nt V		
Name of per	rson sampling	RICHARD FRE		Downgradie	IL V		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIO	ONS			
	Well/Piezometer	Properly Capped?	YES		Standing W	/ater or Litter?	No
	B.) GROUNDWAT	ER ELEVATION MEA	SUREME	NT (+/- 0.01 f	oot, MSL)		
	Elevation: Top Depth of Well Equipment Use		Inside (Ground Casing Diamo		938·5· hes) z·o··	පි
·	Gro	undwater Level (+/- 0.	.01 foot be	low top of inn	er casing,	MSL):	
	,	Date/Time		Depth to Groundwater		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	9/28/04 9:2	5 :	20.8 37.0 20.8			
	C.) WELL PURGIN	IG .					
	No.of Well Vol	ater Removed from Wumes (based on curro ped/bailed dry?					
	Equipment us Bailer ty Pump ty If not dec	oe	eaning		ed Bailer ed Bailer		
	D.) FIELD MEASU	REMENT					
	Field Measurm Temperal Equ pH Equ Specific Cond	ents (after stabilization ure 15 HAC	H COM	Units Pary Po Pary Units Company	CKET FOCKE	PAL F PAL XET PA	
	Comments						
	NOTE: Attach	Laboratory Report an dwater monitoring po	d 8-12" x 1 ints. One r	1" site plan s nap per samp	howing loc oling round	ations of all su	ırface and

Site Name	AMES-STORY	Environmental	LANDFILL	Permit No.	85-	SDP-	13-91	P
Monitoring	Well/Piezometer No	. <u>MW-43</u>) 	Upgradient_		···		
Name of pe	erson sampling	RICHARD FRE	Eman	Downgradie	nt.			_,
	A.) MONITORING	WELL/PIEZOMETE	R CONDITI	ONS				
	Well/Piezomete	or Properly Capped?_	YES		Standing \ If yes, exp	Vater or Lit	er? No	
	B.) GROUNDWAT	TER ELEVATION ME	ASUREME	NT (+/- 0.01	foot, MSL))		
	Elevation: To Depth of Well Equipment Us		Inside	ろ Grour Casing Diam				
	Gro	oundwater Level (+/- (0.01 foot be	elow top of in	ner casing	, MSL):		
		Date/Time		Depth to Groundwate	r	Groundw Elevation		
	Before Purging *After Purging *Before Sampling	9/20/04	1:40	18:8 27:0 18:8				÷
	C.) WELL PURGI	NG						
	Quantity of W No.of Well Vo Was well pur	/ater Removed from Volumes (based on cur nped/bailed dry?	Vell (gallon rent water ا دلب	s) 3 evel) 1:5				
	Equipment u Bailer t Pump t If not de	ype PVC	leaning	'Dedica	ted Bailer ted Bailer			
	D.) FIELD MEAS	UREMENT						
	Field Measur Tempera Ec pH Specific Con	ditions cloudy ments (after stabilizate ature	ion): CH Com	Lloito	BOKET POCKE	PAL T PAL	7-1	
	Comments	. <u></u> ,	·					•••
		n Laboratory Report a Indwater monitoring p					ill surface a	and

onitoring Well/Piezometer No.	5W-1	Date/Time _	9/24/04	305 pm
ame of person sampling	RICHARD FRE	EMAJ		
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch		n Tile with Riser er		
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Dow Other	vnstreamer		
C.) MONITORING POINT CO	NDITIONS			
General description/con	dition of monitoring	point		
Was monitoring point dr Was water flowing?	4.05 If ye	Too little wates, estimate quantity		Su doep
Was water discolored? Does water have odor? Was ground discolored' Litter present?	N6 No No No	If yes, descik If yes, descik If yes, descik If yes, descik	e below. e below.	·
Comments				
D.) FIELD MEASUREMENT				
Weather Conditions	cloudy 60	o-75°		
Field Measurments (a Temperature Equipment L pH Equipment L Specific Conditions	120 Used HACH CON 9.4 Used HACH CO	Units LPANY FOCKET WPANY FOCKET Units	Pal Pal	

Site Name AMES-STORY Envi	ronmental LAN	PFILL Permit No.	85-SDP-1	3-916
Monitoring Well/Piezometer No.	SW-Z	Date/Time	9/24/64	3:20pm
Name of person sampling	RICHARD FREI	EMAN	. ,	
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch	Oper Tile v Othe	vith Riser		
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Dowi Othe	nstream /		
C.) MONITORING POINT CO	NDITIONS			
General description/con	dition of monitoring			
Was monitoring point dr Was water flowing?	465 If yes	Too little was, estimate quantity	er to sample? N Little How 10ft wide x6'	So deep
Was water discolored? Does water have odor? Was ground discolored' Litter present?	No No No No	If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below.	,
Comments				
D.) FIELD MEASUREMENT				
Weather Conditions	cloudy 60	o-75°		/AP AL C 1851/17 The AP Th
Field Measurments (at Temperature Equipment U pH Equipment U Specific Conditions Equipment U	21 Sed HACH COM 8'4 Ised HACH COV 1096	Units PANY POCKET WPANY FBCKE Units WPANY POCKE	PAL TPAL	
Comments				

Site Name AMES- STORY ENV	FORMENTAL L	ANDEILL Permit No.	85-SDP - 13	3-91P
Monitoring Well/Plezometer No.	5W-3	Date/Time	9/24/04	
Name of person sampling	RICHARD FR	EEMAJ		
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch		en Tile e with Riser ner		
B.) PURPOSE OF MONITOR	RING POINT			
Upstream Within Landfill	Do	wnstream her		
C.) MONITORING POINT CO	ONDITIONS			
General description/cor	ndition of monitorin	g point		
Was monitoring point d Was water flowing?	If (Too little wayes, estimate quantity	ter to sampl <u>e?</u>	
Was water discolored? Does_water have odor? Was ground discolored Litter present?		If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below.	
Comments				
D.) FIELD MEASUREMENT	•			
Weather Conditions				
Field Measurments (a Temperature Equipment L pH Equipment t Specific Conditions Equipment t	Jsed HACH Con	Units WPANY FOCKET OMPANY FOCKE Units OMPANY POCKE		
Comments				

Site Name AMES- STORY EN	MONMENTAL LAN	Permit No.	85-SDP-	-13-916
Monitoring Well/Piezometer No.	SW-4	Date/Time	9/25/0)4
Name of person sampling	RICHARD FRE	EMAN		
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch		n Tile with Ris <u>er</u> er		
B.) PURPOSE OF MONITO	RING POINT			
Upstream Within Landfill	Dow Othe	nstreamer		
C.) MONITORING POINT C	ONDITIONS			
General description/co	ndition of monitoring	point		
Was monitoring point of Was water flowing?	lf ye	Too little wa s, estimate quantity s, estimate depth	ter to sample?	
Was water discolored? Does water have odor Was ground discolored Litter present?	?	If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below.	
Comments				
D.) FIELD MEASUREMEN Weather Conditions				
Field Measurments (a Temperature Equipment pH Equipment Specific Condition Equipment	Used HACH CON Used HACH CO s	Units PANY POCKET MPANY FOCKET Units MPANY POCKET	C PAL	
Comments			130 , 200 , 10	

lite Name AMES-Story Env	FORMENTAL LAN	PEILL Permit No.	85-SDP-13-91P
fonitoring Well/Plezometer No.	5w-5	Date/Time	9/25/04
ame of person sampling	RICHARD FREE	EMAN	
A.) TYPE OF MONITORING	POINT		
Stream Road Ditch Drainage Ditch	Open Tile w	ith Riser	
B.) PURPOSE OF MONITOR	ING POINT		
Upstream Within Landfill	Dowr	astream V	
C.) MONITORING POINT CO	ONDITIONS		
General description/con	dition of monitoring p	point	
Was monitoring point di Was water flowing?	/ /If yes	Too little wat , estimate quantity , estimate depth	ter to sampl <u>e?</u>
Was water discolored? Does water have odor? Was ground discolored Litter present?	?	If yes, descil If yes, descil If yes, descil If yes, descil	be below. be below.
Comments			
D.) FIELD MEASUREMENT			
Weather Conditions			
Field Measurments (a Temperature Equipment L		Units	Pau
pH Equipment L		PRAY FOCKET	
Specific Conditions Equipment L	Ised HACH Con	Units APANY POCKS	
Comments			

Site Name AMES-STORY EN	ILLOUWENTE	LANDEIL	Permit No.	85-SDP	-13-9	710
Monitoring Well/Piezometer No.	5W-	ره	Date/Time _	9/25/	04_	12:45
Name of person sampling	RICHARD	FREEM	ما	<u>-</u>		
A.) TYPE OF MONITORING	POINT					
Stream Road Ditch Drainage Ditch		Open Tile Tile with Other				
B.) PURPOSE OF MONITOR	RING POINT	٠				
Upstream Within Landfill		Downstre Other	eam			
C.) MONITORING POINT CO	SNOITIONS					
General description/col	ndition of mor	nitoring poin	t			
Was monitoring point d Was water flowing?	nya No yea	If yes, es If yes, es	Too little war timate quantity timate depth	ter to sample? gliqUT 4"PVC p	Flow	
Was water discolored? Does water have odor? Was ground discolored Litter present?	No		If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below.		
Comments						
D.) FIELD MEASUREMENT			<u></u>	<u></u>		
Weather Conditions	cloude	1 60-7	·5	ma maria meranerista i Managare e dene e e es		
Field Measurments (a Temperature Equipment (pH Equipment (Specific Conditions Equipment (Jsed HACH 7.0 Used HACt	Compan t Compo	Units Y FOCKET W FOCKE Units LY POCKE	PAL PAL T PAL		
Comments		******		· · · · · · · · · · · · ·	•	

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

NORTH TRENCHES

		SAMPLING I	DATE:	March 8, 200)4												
	ACTION	U.G.W	U.G.W	U.A.W	U.A.W	D.G.W	D.G.W	D.G.W	D.G.W	D.A.W	D.A.W	BOTH	BOTH		SURFACE M		
PARAMETER	LEVEL	MW 22	MW 28	MW 27	MW 29	MW 23	MW 24	MW 26	MW 31	MW 30	MW 32	MW 25	MW 33	MW 34	SW 1	SW 2	SW 3
ug/L																	
Benzene *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Carbon tetrachloride *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
1,4-Dichlorobenzene *	75	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT	NT NT	NT	NT	NT	NT	dry
1,2-Dichloroethane *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
1,1-Dichloroethene *	7	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
1,1,1-Trichloroethane *	200	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Trichloroethene *	5	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
mg/L																	
Arsenic, dissolved	0.05	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT	NT	NT	NT NT	NT	NT	dry
Barium, dissolved	2.0	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Cadmium, dissolved	0.005	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Chromium, dissolved	0.1	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Lead, dissolved	0.015	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Mercury, dissolved	0.002	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Magnesium, dissolved		Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Zinc, dissolved	2	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	NT.	NT	NT	NT	NT	NT	dry
Iron, dissolved		Plugged	<0.03	Plugged	<0.03	0.033	<0.03	Plugged_	0.463	<0.03	<0.03	0.121	7.99	0.231	0.038	<0.030	dry
Copper, dissolved	1.3	Plugged	NT	Plugged	NT	NT	NT	Plugged	NT	NT	dry						
Chloride		Plugged	143		<10	14	25	Plugged	50	<10	19	197	45	43	1	195	dry
Nitrogen, Ammonia		Plugged	<1	Plugged	<1.0	<1.0	<1.0	Plugged	<1.0	<1.0	<1.0	<1.0	2	<1.0	<1.0	<1.0	dry
Chemical Oxygen Demand		Plugged	17		<10	18	12	Plugged	29	<10	<10	<10	17	36		18	dry
Total Organic Halogens		Plugged	NT	Plugged_	NT	NT	NT	Plugged	NT	NT	NT	NT	NT	NT_	NT	NT	dry
Phenols		Plugged	NT	Plugged	NT	NT	NT	Plugged	NT NT	NT	NT	NT	NT	NT	NT	NT	dry
																= :	
pH		Plugged	7.5		7.5	7.4	7.1	Plugged	7.4		7	7.6	7.4	7.4		7.4	dry
Temperature, celsius		Plugged	6	Plugged	10	11	10		12		11	9	12	7		5	dry
Conductivity, mv		Plugged	1294	Plugged	787	1460	1138	Plugged	1947	886	1256	1360	1154	1237	1017	1025	dry

NT - Not tested

D.G.W. - Downgradient groundwater well

D.A.W. - Downgradient aquifer well

U.A.W - Upgradient aquifer well

U.G.W - Upgradient groundwater well

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P MONITORING WELL SAMPLING RESULTS

SOUTH TRENCHES

•		SAMPLING	DATE:	March 8, 200														
	ACTION			BOTH	U.A.W	U.G.W	D.G.W	D.A.W	D.A.W	D.A.W	D.G.W	D.G.W	D.A.W	D.A.W	D.G.W	SURFACE		
PARAMETER	LEVEL	FIELD	TRIP	MW 35	MW 36	MW37	MW 6	MW 7	MW 8	MW 38	MW 39	MW 40	MW 41	MW 42	MW 43	SW 4	SW 5	SW 6
ug/L																		
Benzene *	5	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<1	NT
Carbon tetrachloride *	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT_	NT	<0.3	NT
1,4-Dichlorobenzene *	75	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	NT	<1	NT
1,2-Dichloroethane *	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.4	NT
1,1-Dichloroethene *	7	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT	NT	<1	NT
1,1,1-Trichloroethane *	200	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	<1	NT
Trichloroethene *	5	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<1	NT
mg/L																	2 200	NIT
Arsenic, dissolved	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.002	NT
Barium, dissolved	2.0	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.096	NT
Cadmium, dissolved	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	<0.001	NT
Chromium, dissolved	0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.005	NT
Lead, dissolved	0.015	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.005	NT
Mercury, dissolved	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	<0.0005	NT
Magnesium, dissolved		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	24.6	NT
Zinc, dissolved	2	NT	NT	NT	NT .	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.01	NT
Iron, dissolved		NT	NT	0.109	0.073	5.52	<0.030	0.128	3.82	2.19	3.46	<0.030	2.23	3.1	<0.030	0.032	<0.03	4.07
Copper, dissolved	1.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	0.005	NT
Chloride		NT	NT	149	<10	13	71		34	31	42	47	<10	15				73 1.1
Nitrogen, Ammonia		NT	NT	<1.0	<1.0	<1.0	<1.0	<1.0	1.3	<1.0	<1	<1.0	<1.0	<1	4.6		1.7	30
Chemical Oxygen Demand		NT	NT	<10	<10	20	<10	<10	<10	<10	<10	<10	<10	<10	18	1	30	
Total Organic Halogens		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
PhenoIs		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
					4.								=				7.5	7.0
pН		NT	NT	7.4	7	7.1	7.1	7.1	7.7	7.1	7.1	7.5	7	7.7	8.2		7.5	7.8
Temperature, celsius		NT	NT	5	12	11	7	12	12			8	10	14	13		4	15
Conductivity, my		NT	NT	1124	647	1647	1225	704	709	1142	1446	955	764	820	1192	3622	886	1475

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

March 19, 2004

Work Order: 14C0388

Page 1 of 2

Todd Whipple Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Project: Landfill

Project Number: 6004-99A.950

23	17.5	1412 PM		100			70.00		Hall
Ø	Versi	21 70	(1) P. S. Y.				100		100
V.	(2.3	64 (74	Orti	1 J 608 N	1111103	33 F V E-1			100
×				يتوال الماقيس	20 mg (20 %	1000		7-7-5	206.
3	100		14. 8. 4.	or the late of	100	建筑基础	960 1178	STEPPE	2.55

Date Received: 03/09/2004 10:00AM

Collector: Orr, Steve Phone: 515-233-0000

PO Number:

Analyte	Result	MRL	Method	Analyst Analyzed Qualifier
4C0388-01 MW-30			Matrix:Water	Collected: 03/08/04 12:22
Determination of Conventional Chemis	try Parameters			
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	LKM 03/12/04 11:28
Chloride	<10 mg/l	10	EPA 9252	SAA 03/12/04 16:01
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 03/12/04 10:45
Determination of Dissolved Metals				
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	LAR 03/15/04 17:20
4C0388-02 MW-42			Matrix:Water	Collected: 03/08/04 13:53
Determination of Conventional Chemis				
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	LKM 03/12/04 11:28
Chloride	15 mg/l	10	EPA 9252	SAA 03/12/04 16:01
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 03/12/04 10:45
Determination of Dissolved Metals			·	2.15 00/11/04 16 10
Iron, dissolved	3.10 mg/l	0.030	EPA 6010B	LAR 03/11/04 16:18
14C0388-03 MW-43			Matrix:Water	Collected: 03/08/04 14:40
Determination of Conventional Chemi-				
Chemical Oxygen Demand	18 mg/l	10	EPA 410.4	LKM 03/12/04 11:28
Chloride	94 mg/l	10	EPA 9252	SAA 03/12/04 16:01
Nitrogen, Ammonia	4.6 mg/l	1.0	SM 4500-NH3 F	SAA 03/12/04 10:45
Determination of Dissolved Metals				
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	LAR 03/11/04 16:18
14C0388-04 MW-24			Matrix:Water	Collected: 03/08/04 15:52
Determination of Conventional Chemi	stry Parameters	•		
Chemical Oxygen Demand	12 mg/l		EPA 410.4	LKM 03/12/04 11:28
Chloride	25 mg/l		EPA 9252	SAA 03/12/04 16:01
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 03/12/04 10:45
Determination of Dissolved Metals				1 AD 02/11/04 15:19
Iron, dissolved	<0.030 mg/l		EPA 6010B	LAR 03/11/04 16:18
The results in this report apply to	o the samples analy: y. Samples were pre	zed in accordance served in accorda	with the chain of custo nce with 40 CFR for ph	dy document. This analytical report I adjustment unless otherwise noted.

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 14C0388

March 19, 2004 Page 2 of 2

Analyte		Res	ult	MRL	Method	Analyst	t Analyzed (Qualifier
14C0388-04	MW-24				Matrix: Water		Collected: 03/08/0	4 15:52
14C0388-05	MW-32				Matrix:Water		Collected: 03/08/0	4 16:34
Determination of	Conventional Chemi	stry Paramei	ters					
Chemical Oxyger		<10		10	EPA 410.4	LKM	03/12/04 11:28	
Chloride		19	mg/l	10	EPA 9252	SAA	03/12/04 16:01	
Nitrogen, Ammo	nia	<1.0	-	1.0	SM 4500-NH3 F	SAA	03/12/04 10:45	
Determination of	Dissolved Metals							
Iron, dissolved		< 0.030	mg/l	0.030	EPA 6010B	LAR	03/11/04 16:18	

End of Report

Keystone Laboratories, Inc.

Jeffrey King, Ph.D. Laboratory Director

CHAIN OF CUSTODY RECORD

	600 E. 17 th St. S. Newton, IA 50208	3012 Ansborou Waterloo, IA 50
1 Teystone	Newton, IA 50208 Phone: 641-792-8451	Waterloo, IA 56 Phone: 319-23
LABORATORIES, INC.	Fax: 641-792-7989	Fax: 319-23 www.keystonel
		www.keystoner

PHONE:	ADDRESS: AMES, TH 5000	SITE NAME: 600 4-99A. 950	PRINT OR TYPE INFORMATION BELOW SAMPLER: SHOVE ON	LABORATORIES, INC.
FAX: 515 238 010'S	CITY/ST/ZIP: Ames TA 60010	ADDRESS 1601 Golden Haven Dr. Suite 105	NAME: Todd Whaple CPG	☐ 600 E. 17th St. S. ☐ 3012 Ansborough Ave. ☐ 13 Newton, IA 50208 Waterloo, IA 50701 Ka Phone: 641-792-8451 Phone: 319-235-4440 Pt Fax: 641-792-7989 Fax: 319-235-2480 Fax www.keystonelabs.com
Keystone Quote No.:(if Applicable)	PHONE: Ames, IA 50010	ADDRESS: 10 Box 2483	NAME: Mr. Bill Redeler	1304 Adams Kansas City, KS 66103 Phone: 913-321-7856 Fax: 913-321-7937 PAGE / OF /

	Pink - Sampler Copy	Yellow - Lab Copy •	 Yellow - 	Original - Beturn with Report			
(12) - 10 to 15000 CCB 7-97	Metals samp	ime (6)ののメンス	Il. TI	2	Time		
Hemarks:	Hemarks:	13/9/04	•	Received for Lab by: (Signature)	Date	ature)	Relinquished by: (Signature)
	K	Time			Time 5	Par	Star 1
Rush	Turn Around: Standard	Date	D	~0 ← Received by: (Signature)	Date 3. 9-04	ature)	Relinquished by: (Signature
		•		•	•		-
20		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V V	MW 32	18:34		MM 32
70				MIN/24	16:512		MW 24
03				MW 43	14:40		MW 43
				MW 42	113:513		MW 42
0/		(CX	3 W	MW 30	12:22	3-8-04	as MW
SAMPLE CONDITION/COMMENTS		GR/	_	SAMPLE LOCATION	TIMI	DAT	CLIENT SAMPLE NUMBER
°C SAMPLE NUMBER	4	AB/C	OF C		E	 E	
SAMPLE TEMPERATURE UPON RECEIPT: ARORATORY		OMPC	CONT				
1400388		SITE	AINE				
LABORATORY WORK ORDER NO.			RS				
LAB USE ONLY	NALYSES REQUIRED	AN	_				

Original - Return with Report •

Yellow - Lab Copy

Pink - Sampler Copy

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

March 15, 2004

Work Order: 14C0341

Page 1 of 2

Report To :

Todd Whipple
Fox Engineering Associates, Inc.

1601 Golden Aspen Drive, Suite 103 Ames, IA 50010 Work Order in formation

Date Received: 03/08/2004 10:15AM

Collector: Orr, Steve Phone: 515-233-0000

PO Number:

Project: Landfill

Project Number: 6004-99A.950

Analyte	Re	sult	MRL	Method	Analyst	Analyzed Qualifier
14C0341-01 MW-35	%			Matrix:Water	(Collected: 03/07/04 11:34
Determination of Conventional Chemistry I	Pàrame	ters				
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LKM	03/12/04 11:28
Chloride	149	mg/l	10	EPA 9252	SAA	03/12/04 16:01
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Determination of Dissolved Metals						
Iron, dissolved	0.109	mg/l	0.030	EPA 6010B	LAR	03/08/04 17:11
14C0341-02 MW-34	1 121	· · · · /**	Market Spiller	Matrix:Water	*	Collected: 03/07/04 12:31
Determination of Conventional Chemistry	Parame	eters		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		with a realizable control of
Chemical Oxygen Demand		mg/l	10	EPA 410.4	LKM	03/12/04 11:28
Chloride	43	mg/l	10	EPA 9252	SAA	03/12/04 16:01
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/12/04 10:45
Determination of Dissolved Metals						
Iron, dissolved	0.231	mg/l	0.030	EPA 6010B	LAR	03/08/04 17:11
14C0341-03 MW-33				Matrix:Water	(Collected: 03/07/04 13:28
Determination of Conventional Chemistry	Parame	eters				
Chemical Oxygen Demand		mg/I	10	EPA 410.4	LKM	03/12/04 11:28
Chloride	45	mg/l	10	EPA 9252	SAA	03/12/04 16:01
Nitrogen, Ammonia	2.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/12/04 10:45
Determination of Dissolved Metals						
Iron, dissolved	7.99	mg/l	0.030	EPA 6010B	LAR	03/08/04 17:11
14C0341-04 MW-25				Matrix: Water		Collected: 03/07/04 14:13
Determination of Conventional Chemistry	Param	eters				
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	LKM	03/12/04 11:28
Chloride	197	mg/l	10	EPA 9252	SAA	03/12/04 16:01
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	03/12/04 10:45
Determination of Dissolved Metals						
Iron, dissolved	0.121	mg/l	0.030	EPA 6010B	LAR	03/08/04 17:11

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 14C0341

March 15, 2004 Page 2 of 2

Analyte	Result	MRL	Method	Analyst Analyzed Qualifier
14C0341-05 MW-31			Matrix:Water	Collected: 03/07/04 16:26
Determination of Conventional Chemist	ry Parameters			
Chemical Oxygen Demand	29 mg/l	10	EPA 410.4	LKM 03/12/04 11:28
Chloride	50 mg/l	10	EPA 9252	SAA 03/12/04 16:01
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 03/12/04 10:45
Determination of Dissolved Metals				
Iron, dissolved	0.463 mg/l	0.030	EPA 6010B	LAR 03/08/04 17:11
4C0341-06 MW-23	· · · · · · · · · · · · · · · · · · ·		Matrix:Water	Collected: 03/07/04 17:29
Determination of Conventional Chemist	ry Parameters			
Chemical Oxygen Demand	18 mg/l	10	EPA 410.4	LKM 03/12/04 11:28
Chloride	14 mg/l	. 10	EPA 9252	SAA 03/12/04 16:01
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA 03/12/04 10:45
Determination of Dissolved Metals				
Iron, dissolved	0.033 mg/l	0.030	EPA 6010B	LAR 03/08/04 17:11

End of Report

Jeffey King

Keystone Laboratories, Inc. Jeffrey King, Ph.D. Laboratory Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. Samples were preserved in accordance with 40 CFR for pH adjustment unless otherwise noted. MRL= Method Reporting Limit.

\\ \feystone

☐ 600 E. 17th St. S. Phone: 641-792-8451 Newton, IA 50208

CHAING

G

1304 Adams

3012 Ansborough Ave. Phone: 319-235-4440 Fax: 319-235-2480 Waterloo, IA 50701

Phone: 913-321-7856 Fax: 913-321-7937 Kansas City, KS 66103

PAGE_

PRINT OR TYPE INFORMATION BELOW SAMPLER: STEVE WAME: WAME: STEVE WAME: WAME: STEVE WAME: WAME: STEVE WAME: STEVE WAME: WAME: WAME: STEVE WAME:	LABORATORIES, INC.	s, INC.	Fax: 641-/92-/989	www.keystonelabs.com	
ADDRESS: ## Seals ANDRESS: ## Seals ANDRES	;; E	見る	- 111 M	LOX KOD CO	NAME: M. B. F. F. Level COMPANY NAME: PARISHESS: PO. Bex 2483
CLIENT THE LABORATORY WORK ORDER NO. (II Applicable) PLAB USE ONLY ANALYSES REQUIRED ABORATORY WORK ORDER NO. ANALYSES REQUIRED ANALYSES REQU		IA 500	CITY/ST/ZIP:	346	CITY/ST/ZIP: Aunca, 7A 5-0010 PHONE:
ANALYSES REQUIRED LAB USE ONLY SAMPLE TEMPERATURE UPON RECEIPT: °C NUMBER SAMPLE CONDITION/COMMENTS C ONLY ANALYSES REQUIRED LAB USE ONLY ANALYSES REQUIRE	PHONE:			233 0	
DATE TEMPERATURE SAMPLE TEMPERATURE LABORA SAMI SAMPLE CONDITION/COMMENTS 12:31 MM 33 SAMPLE CONDITION/COMMENTS (C) NUME SAMPLE CONDITION/COMMENTS				OSITE	LABORATOR
SAMPLE LOCATION S & G C SAMPLE CONDITION/COMMENTS 12:31 MW 34 I I I I I I I I I I I I I I I I I I) j			ATRIX	C
35 37 MW 35 3 W 6X	CLIENT SAMPLE NUMBER		SAMPLE LOCATION	MA ⁻ GR/	SAMPLE CONDITION/COMMENTS
3 12:31 MW34 3 13:28 MW 33	35	10	MW 35	K,	
18:28 MM 33	MW/34	12:31	MW34		
	MM 33	13:28	MW 33		

Original - Return with Report • Yellow - Lab Copy • Time Pink - Sampler Copy

Relinquished by: (Signature)

14:13

16:26

N.F.

Relinquished by: (Signature)

Time # :

Date 3-8-04 Received by: (Signature)

Date

Turn-Around: Standard

Rush -

Contact Lab Prior to Submission

Time

Date

Received for Lab by: (Signature)

Date 8/04

Metals Samples Field Filtered

FORM: CCR 7-97

Time

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

March 09, 2004

Work Order: 14C0312

Page 1 of 1

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA .50010

Work Order Information

Date Received: 03/05/2004 9:40AM

Collector: Orr, Steve Phone: 515-233-0000

PO Number:

Project: Landfill

Project Number: 6001-03A.950

Ames C&D

Analyte	Result	MRL	Method	Analyst	t Analyzed Qualifier
14C0312-01 MW-4 /MI	N 28		Matrix:Water		Collected: 03/04/04 13:20
Determination of Conventional Ch	hemistry Parameters				
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Chemical Oxygen Demand	17 mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride	143 mg/l	10	EPA 9252	SAA	03/08/04 17:07
Determination of Dissolved Metal	s				
Iron, dissolved	<0.030 mg/l	0.030	EPA 6010B	LAR	03/08/04 16:19
14C0312-02 MW-5/MI	w 29		Matrix:Water		Collected: 03/04/04 14:35
Determination of Conventional Ch	hemistry Parameters				
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride	<100 mg/l	100	EPA 9252	SAA	03/08/04 17:07
Determination of Dissolved Metal	's				

End of Report

Keystone Laboratories, Inc. Jeffrey King, Ph.D. Laboratory Director

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

March 19, 2004

Page 1 of 3

Work Order: 14C0649

Report To

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Project: Landfill

Ames C&D

Project Number: 6001.03A.950

Worlk Order Infor	navion=2	
	03/15/2004 Orr, Steve 515-233-00	

Analyte	Re	sult	MRL	Method	Analyst Analyzed Qualifier				
4C0649-01 MW-8				Matrix:Water	Collected: 03/10/04 10:22				
Determination of Conventional Chemis	try Parame	ters							
Chemical Oxygen Demand	<10		10	EPA 410.4	RVV	03/17/04 10:55			
Chloride	34	mg/l	10	EPA 9252	SAA	03/17/04 15:55			
Nitrogen, Ammonia	1.3	mg/l	1.0	SM 4500-NH3 F	SAA	03/17/04 10:58			
Determination of Dissolved Metals									
Iron, dissolved	3.82	mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57			
14C0649-02 MW-7				Matrix:Water		Collected: 03/10/04 11:05			
Determination of Conventional Chemis	try Parame	ters							
Chemical Oxygen Demand	<10		10	EPA 410.4	RVV	03/17/04 10:55			
Chloride	14	mg/l	10	EPA 9252	SAA	03/17/04 15:55			
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/17/04 10:58			
Determination of Dissolved Metals									
Iron, dissolved	0.128	mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57			
14C0649-03 MW-6				Matrix:Water		Collected: 03/10/04 12:15			
Determination of Conventional Chemis	stry Parame	eters							
Chemical Oxygen Demand		mg/l	10	EPA 410.4	RVV	03/17/04 10:55			
Chloride	71	mg/l	10	EPA 9252	SAA	03/17/04 15:55			
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/17/04 10:58			
Determination of Dissolved Metals									
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57			
14C0649-04 MW-17				Matrix:Water		Collected: 03/13/04 14:06			
Determination of Conventional Chemi	stry Param	eters							
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	RVV	03/17/04 10:55			
Chloride		mg/l	10	EPA 9252	SAA	03/17/04 15:55			
Nitrogen, Ammonia		mg/l	1.0	SM 4500-NH3 F	SAA	03/17/04 10:58			
- (D) 1 11()				EPA 6010B	LAR	03/17/04 16:57			
Determination of Dissolved Metals		mg/l	0.030						

Accreditations: lowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

March 18, 2004

Page 1 of 3

Work Order: 14C0254

Report Fo

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Project: Landfill

Project Number: 6004-99A,950

Work Order Lincon	nadon
Collector:	03/04/2004 10:00AM Orr, Steve
Phone: PO Number:	515-233-0000

Analyte	Re	sult	MRL	Method		Analyzed Qualifier
14C0254-01 SW-6				Matrix:Water	C	Collected: 03/02/04 12:43
Determination of Conventional Chem	istry Parame	eters				
Chemical Oxygen Demand	30	mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride		mg/l	20	EPA 9252	SAA	03/08/04 17:07
Nitrogen, Ammonia	1.1	mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Determination of Dissolved Metals						
Iron, dissolved	4.07	mg/l	0.030	EPA 6010B	LAR	03/08/04 16:19
14C0254-02 SW-5	The second services		general contracts	Matrix:Water	C	Collected: 03/02/04 13:24
Determination of Volatile Organic Co						
1,1-Dichloroethylene		ug/l	1.0	EPA 8260B	TVK	03/09/04 2:37
1,1,1-Trichloroethane	<1.0	ug/l	1.0	EPA 8260B	TVK	03/09/04 2:37
Carbon Tetrachloride	<0.3	ug/l	0.3	EPA 8260B	TVK	03/09/04 2:37
Benzene	<1.0	ug/l	1.0	EPA 8260B	TVK	03/09/04 2:37
1,2-Dichloroethane	< 0.4	ug/l	0.4	EPA 8260B	TVK	03/09/04 2:37
Trichloroethylene	<1.0	ug/l	1.0	EPA 8260B	TVK	03/09/04 2:37
1,4-Dichlorobenzene	<1.0	ug/l	1.0	EPA 8260B	TVK	03/09/04 2:37
Surrogate: Dibromofluoromethane	106 %		•	81-122	TVK	03/09/04 2:37
Surrogate: 1,2-Dichloroethane-d4	104 %			76-121	TVK	03/09/04 2:37
Surrogate: Toluene-d8	103 %			<i>79-121</i>	TVK	03/09/04 2:37
Surrogate: 4-Bromofluorobenzene	98.9 %			82-122	TVK	03/09/04 2:37
Determination of Conventional Chem	nistrv Param	eters .				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride		mg/l	20	EPA 9252	SAA	03/08/04 17:07
Nitrogen, Ammonia	1.7	mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Determination of Dissolved Metals						
Arsenic, dissolved	0.002	mg/l	0.001	EPA 7060A	LAR	03/11/04 14:53
Barium, dissolved		mg/l	0.010	EPA 6010B	RVV	03/12/04 12:15
Cadmium, dissolved	< 0.00100	-	0.00100	EPA 7131A	LAR	03/10/04 17:42
Chromium, dissolved	< 0.005	mg/l	0.005	EPA 6010B	RVV	03/12/04 12:15
Copper, dissolved	0.005	mg/l	0.005	EPA 6010B	RVV	03/12/04 12:15

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 14C0254

March 18, 2004 Page 2 of 3

Analyte	Re	esult	MRL	Method	Analyst	Analyzed Qualific
4C0254-02 SW-5				Matrix:Water	(Collected: 03/02/04 13:24
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	mg/l	0.030	EPA 6010B	LAR	03/08/04 16:19
Lead, dissolved	< 0.005	mg/l	0.005	EPA 6010B	RVV	03/12/04 12:15
Magnesium, dissolved	24.6	mg/l	0.10	EPA 6010B	RVV	03/12/04 12:15
Mercury, dissolved	< 0.00050	mg/l	0.00050	EPA 7470A	LKM	03/16/04 13:46
Zinc, dissolved	0.010	mg/l	0.010	EPA 6010B	RVV	03/12/04 12:15
4C0254-03 SW-4				Matrix:Water	(Collected: 03/02/04 14:12
Determination of Conventional Che	mistry Paramo	eters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride		mg/l	20	EPA 9252	SAA	03/08/04 17:07
Nitrogen, Ammonia	151	mg/l	4.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Determination of Dissolved Metals			•		•	
Iron, dissolved	0.032	mg/l	0.030	EPA 6010B	LAR	03/08/04 16:19
14C0254-04 SW-1	,			Matrix: Water	(Collected: 03/02/04 14:48
Determination of Conventional Che	mistry Param	eters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride		mg/l	50	EPA 9252	SAA	03/08/04 17:07
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Determination of Dissolved Metals						
Iron, dissolved	0.038	mg/l	0.030	EPA 6010B	LAR	03/08/04 16:19
14C0254-05 SW-2	,			Matrix:Water		Collected: 03/02/04 15:25
Determination of Conventional Che						
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	03/09/04 8:25
Chloride		mg/l	50	EPA 9252	SAA	03/08/04 17:07
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SAA	03/09/04 14:57
Determination of Dissolved Metals						
Iron, dissolved	< 0.030	ma/1	0.030	EPA 6010B	LAR	03/08/04 16:19

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 14C0254

March 18, 2004 Page 3 of 3

End of Report

Keystone Laboratories, Inc. Jeffrey King, Ph.D. Laboratory Director

☐ 600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-8451 Fax: 641-792-7989

3012 Ansborough Ave. Waterloo, IA 50701 Phone: 319-235-4440 Fax: 319-235-2480

☐ 1304 Adams Kansas City, KS 66103
Phone: 913-321-7856
Fax: 913-321-7937

	www.keystonelabs.com	
PRINT OR TYPE INFORMATION BELOW SAMPI FR: 5+0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	REPORT TO: I Shipple CPCS	NAME: Mr. Bill Federer
SITE NAME: 6004-884, 950	COMPANY NAME: FOX FUGINESELLAG 103	COMPANY NAME: COMPANY NAME: 2483
ADDRESS:		CITY/ST/ZIP: Ams, FA 50010
CITY/ST/ZIP: HMES, LIT	PHONE: 800 433 3469	PHONE:
PHONE:	FAX: 515 233 0103	Keystone Quote No.:(If Applicable)

	Mes / Jell in	> Timb	Model	74 15	3,00				_	Time		
	Date July Color to July 1		Hemaiks.		0/4/		ature)	Received for Lab by: (Signature)		Date		Relinquished by: (Signature)
Contact Lab Prior to Submission	Contact Lab Pri					Time			00	Time 5:5:	<i>)</i>	Star La
	Rush	ard.	Turn-Around: N Standard			Date		Received by: (Signature)		Date - 2.04		Relinquished by: (Signature)
										_		
08					6	Z	W	2 M	5	15:25	8-7-04	5W2
08					6	K	03	WI	8	4:48	87:04 H: 48	1 MS
03					6	٤	W	5W4	<u> </u>	21:41		7 WS
02				X	9	B	6	SW5		13:24	32.04	5 MS
()					6	K	W	5W6		84:21	32.04	9 MS
	SAMPLE CONDITION/COMMENTS				GR (A)	МА	NO	SAMPLE LOCATION	SAN	TIM	DA	SAMPLE NUMBER
NUMBER	Ĉ			d	AB/C	TRIX	. OF			IE	ΓE	<u>2</u> 1
LABORATORY	DPON RECEIPT:			+	OMP		CON					
254	1400254			e	OSITE		TAINE					
D .	LABORATORY WORK ORDER NO.		-		=		RS					
DNLY	LAB USE ONLY	QUIRED	NALYSES REQUIRED	ANA						_		

Original - Return with Report •

Yellow - Lab Copy • Pink - Sampler Copy

FORM: CCR 7-97

Accreditations: Iowa DNR: 095 New Jersey DEP: IA001 Kansas DHE: E-10287

ANALYTICAL REPORT

March 19, 2004

Work Order: 14C0650

Page 1 of 2

Report To

Todd Whipple

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103

Ames, IA 50010

Work Order Information

Date Received: 03/15/2004 10:45AM

Collector: Orr, Steve Phone: 515-233-0000

PO Number:

Project: Landfill Project Number: 6004-99A.950

Analyte	Re	sult	MRL	Method		t Analyzed Qualifi
4C0650-01 MW-36				Matrix:Water		Collected: 03/10/04 14:00
Determination of Conventional Chemis	try Parame	ters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	RVV	03/17/04 10:55
Chloride	<10	mg/l	10	EPA 9252	SAA	03/17/04 15:55
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SNT	03/18/04 11:50
Determination of Dissolved Metals		_				00/15/04 16 65
Iron, dissolved	0.073	mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57
14C0650-02 MW-37				Matrix:Water		Collected: 03/10/04 14:47
Determination of Conventional Chemis						00/15/04 16/04
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	03/17/04 16:24
Chloride		mg/l	10	EPA 9252	SAA	03/17/04 15:55
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SNT	03/18/04 11:50
Determination of Dissolved Metals		_				00/15/04 16 55
Iron, dissolved	5.52	mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57
14C0650-03 MW-40				Matrix:Water		Collected: 03/11/04 12:0
Determination of Conventional Chemi						
Chemical Oxygen Demand	<10	mg/l	10	EPA 410.4	SAA	03/17/04 16:24
Chloride		mg/l	10	EPA 9252	SAA	03/17/04 15:55
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SNT	03/18/04 11:50
Determination of Dissolved Metals						
Iron, dissolved	<0.030	mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57
14C0650-04 MW-41		1		Matrix: Water		Collected: 03/11/04 12:5
Determination of Conventional Chemi	stry Param	eters				
Chemical Oxygen Demand		mg/l	10	EPA 410.4	SAA	03/17/04 16:24
Chloride	<10	mg/l	10	EPA 9252	SAA	03/17/04 15:55
Nitrogen, Ammonia	<1.0	mg/l	1.0	SM 4500-NH3 F	SNT	03/18/04 11:50
Determination of Dissolved Metals		••				
		mg/l	0.030	EPA 6010B	LAR	03/17/04 16:57

MRL= Method Reporting Limit.

Fox Engineering Associates, Inc. 1601 Golden Aspen Drive, Suite 103 Ames, IA 50010

Work Order: 14C0650

March 19, 2004 Page 2 of 2

Analyte	Result	MRL	Method	Analyst Analyzed Qualifier
14C0650-04 MW-41			Matrix:Water	Collected: 03/11/04 12:55
14C0650-05 MW-38		,	Matrix:Water	Collected: 03/13/04 12:25
Determination of Conventional Chemi.	stry Parameters			
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA 03/17/04 16:24
Chloride	31 mg/l	10	EPA 9252	SAA 03/17/04 15:55
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SNT 03/18/04 11:50
Determination of Dissolved Metals			•	
Iron, dissolved	2.19 mg/l	0.030	EPA 6010B	LAR 03/17/04 16:57
14C0650-06 MW39			Matrix:Water	Collected: 03/13/04 12:54
Determination of Conventional Chemis	stry Parameters			
Chemical Oxygen Demand	<10 mg/l	10	EPA 410.4	SAA 03/17/04 16:24
Chloride	42 mg/l	10	EPA 9252	SAA 03/17/04 15:55
Nitrogen, Ammonia	<1.0 mg/l	1.0	SM 4500-NH3 F	SNT 03/18/04 11:50
Determination of Dissolved Metals		*		
Iron, dissolved	3.46 mg/l	0.030	EPA 6010B	LAR 03/17/04 16:57
14C0650-07 Trip Blank 2/17.	/04 JRF 9:00		Matrix:Water	Collected: 03/10/04 00:00
Determination of Volatile Organic Con	npounds			
Benzene	<1.0 ug/l	1.0	EPA 8260B	TVK 03/16/04 22:57
Surrogate: Dibromofluoromethane	103 %		81-122	TVK 03/16/04 22:57
Surrogate: 1,2-Dichloroethane-d4	97.4 %		<i>76-121</i>	TVK 03/16/04 22:57
Surrogate: Toluene-d8	105 %		79-121	TVK 03/16/04 22:57
Surrogate: 4-Bromofluorobenzene	100 %		82-122	TVK 03/16/04 22:57

End of Report

Keystone Laboratories, Inc.

Jeffrey King, Ph.D. Laboratory Director

CHAIN OF CUSTODY RECORD

Teystone

600 E. 17th St. S. Newton, IA 50208 Phone: 641-792-8451 Phone: 319-235-4440 3012 Ansborough Ave. Waterloo, IA 50701 ☐ 1304 Adams Phone: 913-321-7856 Kansas City, KS 66103

LABORAIORIES, INC. Fax:	Fax: 641-792-7989 Fax: 319-235-2480 Fax	Fax. 913-321-7937
PRINT OR TYPE INFORMATION BELOW SAMPLER: SHEVE OFF	NAME: Todd Whipple CPG	NAME: My BUL Feder
SITE NAME: 6004-994, 950	COMPANY NAME: FOX By neering	COMPANY NAME: BO BOX 2483
ADDRESS:	CITY/STIZIP: Ames TA 500/0	CITY/ST/ZIP: Amcs, TA 500/0
CITY/STIZIP: AMES, IA 50010	PHONE: 800 433 3469	PHONE:
PHONE:	FAX: 515 233 0103	Keystone Quote No.:(if Applicable)

	Time	Relinquished by: (Signature)	Styling Um Time14:59	Relinquished by: (Signature) Date 3 イターの4		A South	Trin 8/ank 2/17-04 9:00	MM 29 3-13-04 12:54		MW Ll 7-10-04 12:5-	MM/40 3-11-04/2:05	MW37 3.6 M4.47	MW 36 B-10-04 14:00	SAMPLE NUMBER DAT	E				
Original - Return with Report •	K. C.C.	Received for Lab by: (Signature)		9年 Received by: (Signature)			by TRF 2	MW 39 3	88 MM 38	MW 41 3	MW 40 3	MW37 3	MW 36 3	SAMPLE LOCATION 2	OF C	CONT	AINE	RS	
Yellow - Lab Copy	Time /E: 454 A	Date Juster	Time	Date			W	WGX	W 6X	X OX	X	Mex	W GX		TRIX	OMPC	SITE		
Pink - Sampler Copy		Remarks:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Turn-Around: A Standard										6	en-2	ev	le_		ANALYSES REQUIRED
	Williams Sumples Field 1 11/6/10			Rush										SAMPLE CONDITION/COMMENTS	°C	SAMPLE TEMPERATURE UPON RECEIPT:	1400650	LABORATORY WORK ORDER NO.	LAB USE ONLY
	FORM: CCR 7-97		Contact Lab Prior to Submission				07	99	05	04	3	20	101		SAMPLE NUMBER	LABORATORY	0	o.	ONLY

Site Name	AMES-STORY	Environmental	LANDFILLPermit No.	<u> ୫5-</u>	SDP - 13	-91P
Monitoring	Well/Piezometer No	MW-6	Upgradient			
Name of pe	erson sampling	RICHARD FRE	Emal Downgradie	nt <u>.</u>		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS			
	Well/Piezometer	r Properly Capped?_		Standing W If yes, expla	/ater or Litter? a <u>in</u>	No
•	B.) GROUNDWAT	ER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us		inside Casing Diam	nd Elevation neter (in inc	1 940.66 hes) z.o	5
	Gro	oundwater Level (+/- 0	.01 foot below top of in	ner casing,	MSL):	
		Date/Time	Depth to Groundwate	r	Groundwater Elevation	,
	Before Purging *After Purging *Before Sampling	3/10/04 1211	8.27 13.50 8.72		<u></u>	
	C.) WELL PURGI	NG				
	No.of Well Vo	ater Removed from V lumes (based on curr sped/bailed dry?		75		
	Equipment us Bailer ty Pump ty If not de	pe fVC	'Dedica	ted Bailer ted Bailer		
	D.) FIELD MEASU	JREMENT				
	Field Measurn Tempera Eq pH Eq Specific Cond	uipment Used HA	on): Units	BCKET POCKE	FAL T PAL XET PA	
	Comments	<u></u>				
			nd 8-12" x 11" site plan : pints. One map per sam			urface and

Site Name AMES -	STORY EN	ironmental	LANDFIL	Permit No.	85- °	SDP-1	3-91P		
Monitoring Well/Piezor	neter No.	MW-7		Upgradient		· - 			
Name of person samp	ling R	ICHARD FRE	Eman	Downgradie	nı				
A.) MONI	TORING WEL	L/PIEZOMETER	CONDIT	IONS					
Well/Pi	ezometer Pro xp <u>lain</u>	perly Capped?_	YES		Standing W If yes, expla	ater or Litter	7 No		
B.) GROU	JNDWATER E	ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)				
Dept	ation: Top of in In of Well Inment Used	nner well casing 53' SOLINST	943·2 Inside	Groun Casing Dian		n 940°(hes) z.o°			
Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):									
		Date/Time		Depth to Groundwate	ər	Groundwat Elevation	er		
Before Pu *After Pur *Before S	ging	3/10/04 3/10/04 116:01	6	23.05 50.09 49.68			- - -		
C.) WELL	PURGING								
No.o	ntity of Water if Well Volume well pumped	Removed from Wes (based on curror)/bailed dry?	Vell (gallor ent water	level)					
Equi	pment used: Bailer type Pump type If not dedica	PYC	eaning	_	ated Bailer ated Bailer				
D.) FIEL	D MEASURE	MENT							
Field	Temperature Equipm pH Equipm cific Condition	s (after stabilization 12 12 12 13 14 14 15 15 15 15 15 15	on):	Units PANY ONEANY Units Company	POCKE	FAL T FAL			
Comme	nts								
NOT	E: Attach Lab groundwa	oratory Report ar ater monitoring po	nd 8-12" x pints. One	11" site plan map per san	showing loo npling round	cations of all i.	surface and		

Site Name	AMES-STORY	Environmental	LANDFILL	Permit No.	<u>85-</u>	SDP-	13-91P
Monitoring \	Well/Piezometer No.	MW-8		_Upgradient _			· · · · · ·
Name of pe	rson sampling	RICHARD FRE	EMAN	Downgradier	11.		
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?	YES			Vater or Litte a <u>in</u>	
	B.) GROUNDWATE	ER ELEVATION MEA	SUREME	NT (+/- 0.01 f	foot, MSL)		
	Elevation: Top Depth of Well Equipment Use	of inner well casing 71.7	Inside	Groun Casing Diam	d Elevatio eter (in ind	n 940. ches) z.c	
	Gro	undwater Level (+/- 0	.01 foot be	elow top of inr	ner casing,	MSL):	
		Date/Time		Depth to Groundwater	r .	Groundwa Elevation	ater
	Before Purging *After Purging *Before Sampling	3/10/04 3/10/04 10:2	.2	35.96 58:20 38:17			
	C.) WELL PURGIN	IG					• •
	No.of Well Vol	ater Removed from W umes (based on curro ped/bailed dry?	fell (gallon ent water l No	s) 35 level) 3	· · · · · · · · · · · · · · · · · · ·		
	Equipment uso Bailer typ Pump tyl If not dec	oe PVC	eaning	_	ed Bailer ed Bailer		
	D.) FIELD MEASU	REMENT					
	Field Measurm Temperat Equ pH Equ Specific Cond	ipment Used HAC 7'7 ipment Used HA itions 709	on): LH GA KCH C	Units Pary Po Porpory Units Company	POCKE	FAL TPAL XET F	} L
	Comments				·		
		Laboratory Report and dwater monitoring po					ll surface and

Site Name	AMES-STORY EN	vironmental	LANDFIL	Permit No.	<u>ଷ୍ଟ-</u>	SDP-	13-91P
Monitoring	Well/Piezometer No.	MW-23		Upgradient	at /		
Name of pe	erson sampling	ICHARD FRE	EMAN	Downgradie <u>r</u>	IL V		
	A.) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pro	operly Capped?	YES		Standing V If yes, exp	Vater or Litt la <u>in</u>	er? No
	B.) GROUNDWATER	ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL)		
	Elevation: Top of i Depth of Well Equipment Used	nner well casing 27 · 86 SOLINST	945.9 Inside	S Ground Casing Diam	nd Elevation neter (in inc		
	Ground	water Level (+/- 0	.01 foot b	elow top of inr	ner casing	, MSL):	
		Date/Time		Depth to Groundwate	г	Groundwa Elevation	ater
	Before Purging *After Purging *Before Sampling	3/7/04 17:2	<u>.</u> 9	7.09 24.0 21.49			
	C.) WELL PURGING						
,	Quantity of Water No.of Well Volum Was well pumped	es (based on curr					
,	Equipment used: Bailer type Pump type If not dedica	PVC ated, method of clo	eaning	-	ted Bailer ted Bailer		
	D.) FIELD MEASURE	MENT					
	pH Equipr Specific Conditio	s (after stabilization 1 1 1 1 1 1 1 1 1		Units DANY ONPANY Units COMPAN	POCKET POCKE	FAL T FAL	FL.
	Comments						
	NOTE: Attach Lat	oratory Report an					Il surface and

Site Name	AMES-STORY EN	vironmental	LANDFILLPermit No.	<u> ୫</u> 5-	SDP-	13-91P			
Monitoring	Well/Piezometer No.	MW-24	Upgradient		1	, <u></u>			
Name of p	erson şampling 🥻	ICHARD FRE	Downgradie	nt 🗸					
	A.) MONITORING WE	LL/PIEZOMETER	CONDITIONS						
	Well/Piezometer Pro	pperly Capped?	YES	Standing V If yes, expl	Vater or Litte a <u>in</u>	ar? No			
	B.) GROUNDWATER	ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)					
	Elevation: Top of inner well casing 939.44 Ground Elevation 936.94 Depth of Well 20.60 Inside Casing Diameter (in inches) 2.0" Equipment Used 504.05T								
	Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):								
		Date/Time	Depth to Groundwate	r ,	Groundwa Elevation				
	Before Purging *After Purging *Before Sampling	3/8/04 3/8/04 15:5	-15 20:65 7:35			- - -			
	C.) WELL PURGING Quantity of Water No.of Well Volume Was well pumped	es (based on curre	Vell (gallons) <u>5</u> ・9 ent water level) 3	· · · · · · · · · · · · · · · · · · ·					
	Pump type	PVC	'Dedica	ted Bailer ted Bailer					
	D.) FIELD MEASURE	MENT			·				
	pH Equipn Specific Condition	s (after stabilization / 0) nent Used HAC	on):	POCKET	FAL T PAL XET F	ÀL			
	Comments					-			
	NOTE: Attach Lab	oratory Report an	d 8-12" x 11" site plan	showing to	cations of al	I surface and			

groundwater monitoring points. One map per sampling round.

^{*}Omit if only measuring groundwater elevations.

Site Name AMES-STORY EN	vironmental	MUDEIN	Permit No.	<u> සි5- </u>	SDP-1	3-91P
Monitoring Well/Piezometer No.	MW-25		Upgradient	n! /		
Name of person sampling	RICHARD FRE	EMAN	Downgradie	TIL V		
A.) MONITORING WE	LL/PIEZOMETER	CONDITI	ONS			
Well/Piezometer Pr If no, exp <u>lain</u>	operly Capped?_	YES		Standing W If yes, expla	later or Litte ain	17 No
B.) GROUNDWATER	ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)		
Elevation: Top of Depth of Well Equipment Used	inner well casing 19.5 5041251	Inside	34 Groun Casing Dian	nd Elevatior neter (in inc		
Ground	dwater Level (+/- 0	.01 foot be	elow top of in	ner casing,	MSL):	
	Date/Time		Depth to Groundwate	er .	Groundwar Elevation	
Before Purging *After Purging *Before Sampling	3/7/04 3/7/04 /4713		9:08 10:16 9:08			- -
C.) WELL PURGING	• ,				,	
Quantity of Water No.of Well Volum Was well pumper	r Removed from W les (based on curr d/bailed dry?	Vell (gallon ent water	s) evel)			
Equipment used: Bailer type Pump type tf not dedic	7 0	eaning		ated Bailer ated Bailer		
D.) FIELD MEASURE					•	
Temperature Equip pH Equip Specific Condition	nts (after stabilization of the stabilization of th	on): CH CON ACH C	Units Pany F OMPANY Units Company	POCKE	FAL T FAL XET F	\
Comments			· · · · · · · · · · · · · · · · · · ·			
NOTE: Attach La groundv	boratory Report ar vater monitoring po	nd 8-12" x pints. One	11" site plan map per san	showing loo npling round	cations of al	surface and

Site Name	AMES-STORY 8	invironmental	LANDFILL Permit No.	85- SDP-1	3-91P
Monitoring V	Vell/Piezometer No.	MW-28	Upgradient Downgradie	nt 🗸	
Name of per	son sampling	RICHARD FRE		ni V	
,	A.) MONITORING V	VELL/PIEZOMETER	CONDITIONS		
	Well/Piezometer If no, explain	Properly Capped?_		Standing Water or Litter If yes, expla <u>in</u>	No
í	B.) GROUNDWATE	R ELEVATION MEA	SUREMENT (+/- 0.01	foot, MSL)	
	Depth of Well	of inner well casing ZZ: 7 d SOLINST	946.02 Groun Inside Casing Diam	nd Elevation 942 neter (in inches) 2.0"	
	Grou	ndwater Level (+/- 0	.01 foot below top of in	ner casing, MSL):	,
		Date/Time	Depth to Groundwate	Groundwate Elevation	ır
,	Before Purging *After Purging *Before Sampling	3/2/04 13:20	6.99 16.49 6.99	•	
	C.) WELL PURGIN	g ′			
	No.of Well Volu	imes (based on curr	rell (gallons) 7.65 ent water level) 3		
	Equipment use Bailer typ Pump typ If not ded	e PVC	'Dedica	ted Bailerted Bailer	
	D.) FIELD MEASU	REMENT			
	Field Measurm Temperati Equ pH Equ Specific Condi	tions cloudy 3 ents (after stabilizations re lipment Used HACTIONS JZ94 ipment Used HACTIONS JZ94 ipment Used HACTIONS JZ94	on):	POCKET FALL BY POCKET FA	
	Comments	<u> </u>			
			d 8-12" x 11" site plan ints. One map per sam	showing locations of all sapling round.	surface and

Site Name	AMES-STORY	Environmental	LANDFILL Permit No.	85- SI	2P-13-91P				
Monitoring '	Well/Piezometer No.	MW-Z9	Upgradient Downgradie	nt 🗸					
Name of pe	rson sampling	RICHARD FRE		n v					
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS						
	Well/Piezometer	Properly Capped?_	YES	Standing Wate If yes, expla <u>in</u>	er or Litter? No				
	B.) GROUNDWAT	ER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)					
	Elevation: Top Depth of Well Equipment Us	of inner well casing 53.5 ed 50LING	Inside Casing Diam	nd Elevation (inches					
Groundwater Level (+/- 0.01 foot below top of inner casing, MSL):									
		Date/Time	Depth to Groundwate		oundwater evation				
	Before Purging *After Purging *Before Sampling	3-4-04 3-4-04 14:35	13:53 50:5 46:16						
	C.) WELL PURGIN	1G							
	No.of Well Vo	ater Removed from W lumes (based on curr ped/bailed dry?	/ell (gallons) 9:25 ent water level) 1:3 169						
	Equipment us Bailer ty Pump ty If not de	pe PVC	'Dedica	ted Bailer					
	D.) FIELD MEASU	JREMENT							
	Tempera Eq pH Eq Specific Cond	nents (after stabilization ture 10 uipment Used HAC 1'5 uipment Used HAC	on): Units	POCKET TOCKET	PAL T PAL				
	Comments								
	NOTE: Attach groui	Laboratory Report an ndwater monitoring po	d 8-12" x 11" site plan s bints. One map per sam	showing location	ons of all surface and				

Site Name	AMES-STORY	Environmental	LANDFILLPermit No.	85- SDP-	13-91P
Monitoring	Well/Piezometer No	MW-30	Upgradient		
Name of pe	erson sampling	RICHARD FRE	Downgradie	nt V	
	A.) MONITORING	WELL/PIEZOMETER	CONDITIONS		
	Well/Piezomete If no, exp <u>lain</u>	r Properly Capped? _	YES	Standing Water or Litt If yes, expla <u>in</u>	er? No
	B.) GROUNDWAT	ER ELEVATION MEA	ASUREMENT (+/- 0.01	foot, MSL)	
	Elevation: Top Depth of Well Equipment Us		inside Casing Dian	nd Elevation 943 neter (in inches) 2.0	162
	Gro	oundwater Level (+/- 0	.01 foot below top of in	ner casing, MSL):	
	·	Date/Time	Depth to Groundwate	Groundwa Elevation	
	Before Purging *After Purging *Before Sampling	3/8/04 3/8/04 17:	37:43 57:5 31:43		
	C.) WELL PURGI	NG			
	No.of Well Vo	later Removed from Volumes (based on curroped/bailed dry?	vell (gallons) 10'5 ent water level) 3		
	Equipment us Bailer ty Pump ty If not de	rpe fvc		ted Deller	
	D.) FIELD MEAS	UREMENT			
	Tempers Ec pH Ec Specific Con	ditions 40° climents (after stabilizations 7 climents) quipment Used 44, quipment Used 44, ditions 886 quipment Used		POCKET PAL	\ \
	Comments	. <u> </u>			
			nd 8-12" x 11" site plan bints. One map per sam		ıll surface and

Site Name <u>A</u>	MES-STORY	Environmental	LANDEILLE	Permit No.	85-	SDP - 13	-91P
Monitoring We	ell/Piezometer No.	MW-31		Jpgradient _ Downgradier	<u> </u>		
Name of perso	on sampling	RICHARD FRE		Jowngradie <u>i</u>	11 1	•	
A.) MONITORING	WELL/PIEZOMETER	CONDITIO	ONS			
	Well/Piezometer	Properly Capped?	YES		Standing W f yes, expla	later or Litter?	No
В.	.) GROUNDWAT	ER ELEVATION MEA	ASUREMEN	NT (+/- 0.01 1	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us	of inner well casing 36 ed 50LI	inside (3 Groun Casing Diam	d Elevation eter (in inc		
	Gro	undwater Level (+/- 0	.01 foot bel	low top of inr	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r	Groundwater Elevation	
*/	efore Purging After Purging Before Sampling	3-7-04 3-7-04 16i0	o .	11:54 33:65 30:19			
С	.) WELL PURGI	۱G ِ		·			
	No.of Well Vo	ater Removed from W lumes (based on curr ped/bailed dry?	Vell (gallons ent water le) 7·2 evel) 1·2			
	Equipment us Bailer ty Pump ty If not de	pe PVC	eaning		ted Bailer ted Bailer		
C	D.) FIELD MEAS	JREMENT					
	Tempera Eq pH Eq Specific Con	nents (after stabilization ture 12 uipment Used 14 uipment Use	on):	Units Pary Portion Units Company	POCKET POCKE	FAL T FAL XET FAL	
	Comments						
	NOTE: Attach	Laboratory Report ar ndwater monitoring po	nd 8-12" x 1 pints. One r	1" site plan s nap per sam	showing loo pling round	cations of all su	rface and

Site Name An	NES-STORY E	vuironmental	LANDFIL	Permit No.	<u>85-</u>	SDP - 13	3-91P
Monitoring Well	/Piezometer No.	MW-32		_Upgradient _		·	
Name of persor	n sampling	RICHARD FRE	EMAN	Downgradie	III P		
A.)	MONITORING W	ELL/PIEZOMETER	CONDIT	IONS			·
	Well/Piezometer P If no, explain	roperly Capped?_	YES		Standing V If yes, expl	Vater or Litter <u>?</u> a <u>in</u>	No
B.)	GROUNDWATER	RELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL)		
	Depth of Well Equipment Used	50.5 SOLINST	•	Casing Diam		ches) Z.O"	
	Groun	dwater Level (+/- 0	.01 foot b	elow top of in	ner casing	MSL):	
		Date/Time		Depth to Groundwate	r	Groundwate Elevation	Г
*Af	fore Purging fter Purging efore Sampling	3/8/04 16:34	ţ	33:89 48:28 43:04			
C.)	WELL PURGING	• •					
	Quantity of Wate No.of Well Volur Was well pumpe	or Removed from W nes (based on curr ed/bailed dry?	Vell (gallor ent water No	level) 3	 		
	Equipment used Bailer type Pump type If not dedic	pve	eaning	_ 'Dedica _ 'Dedica	ted Bailer ted Bailer		-
D.)) FIELD MEASUR	EMENT					
	Field Measurme Temperatur Equip pH Equip Specific Conditi		on): CH CON ACH C	Units APANY OMPANY Units Compan	BCKET POCKE	TAL TAL	
С	comments			·			
		aboratory Report an water monitoring po					urface and

Site Name	AMES-STORY	Environmental	LANDFIL	Permit No	<u> ୫5-</u>	SDP-	13-91P
Monitoring \	Well/Piezometer No	MW-33		Upgradient _ Downgradien	nt V	· · · · · · · · · · · · · · · · · · ·	
Name of pe	rson sampling	RICHARD FRE	EMAN	- Downgradie <u>ii</u>	IL V		
	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?_	YES	S	Standing W f yes, expl	/ater or Litt a <u>in</u>	er? No
	B.) GROUNDWAT	ER ELEVATION ME	ASUREME	ENT (+/- 0.01 f	oot, MSL)		
	Elevation: Top Depth of Well Equipment Us		906.3 Inside	2 Ground Casing Diam		n 904 · (hes) z · c	
	Gro	undwater Level (+/- 0	.01 foot b	elow top of inn	er casing,	MSL):	
		Date/Time	·	Depth to Groundwater		Groundwa Elevation	ater
	Before Purging *After Purging *Before Sampling	3-7-04 3-7-04 1312	Ø	9·21 13•74 9·21			
	C.) WELL PURGI	NG				·	
	No.of Well Vo	ater Removed from V lumes (based on curr ped/bailed dry?	Vell (gallor ent water No	level) 3			
	Equipment us Bailer ty Pump ty If not de	pe rv	eaning	_	ed Bailer ed Bailer		
	D.) FIELD MEAS	JREMENT					
	Tempera Eq pH Eq Specific Con	nents (after stabilizati ture 17 uipment Used 4A 14 uipment Used 4	on):	Units Pary Porpary Units Compar	POCKET	FAL T PAL XET T	ĀL.
	Comments						
	NOTE: Attach grou	Laboratory Report ar ndwater monitoring p	nd 8-12" x oints. One	11" site plan s map per sam	showing loo pling round	cations of a d.	ill surface and

Site Name	AMES.	-STORY	Environa	nental	LANDFIL	Permit No.	<u> ୫</u> 5-	SDP-	13-91P
Monitoring \	Well/Piez	ometer No	. <u>M</u>	W-34	· 	Upgradient Downgradie			
Name of pe	rson sam	pling	RICHAR	D FREE	ham		<u> </u>		
	A.) MON	NITORING	WELL/PIEZ	OMETER (CONDIT	ONS			
		Piezomete exp <u>lain</u>	r Properly Ca	pped?	YES			Vater or Litte Ia <u>in</u>	
	B.) GRO	DUNDWAT	ER ELEVAT	ION MEAS	SUREME	NT (+/- 0.01	foot, MSL)	•	
	Dep	oth of Well lipment Us	ed 50	425	Inside	Casing Diar	neter (in in	n 906 ches) 2.0	85
		Gro	oundwater Le	vel (+/- 0.0	01 foot be	elow top of ir	ner casing	, MSL):	
			Date/Ti	me		Depth to Groundwate	er	Groundwa Elevation	iter ,
	Before F *After Pu *Before		3-7-0	12:31		5.58 14.24 5.58	.		-
	C.) WE	LL PURGII	NG						
	No.	of Well Vo	ater Remove lumes (base ped/bailed d	d on curre	nt water	level) 5			
	Eq	uipment us Bailer ty Pump ty If not de	pe PVC		aning	_	ated Bailer ated Bailer		
	D.) FIE	LD MEAS	JREMENT						
	Fie	ld Measurr Tempera Eq pHEq ecific Con	ditions 30° ments (after subture dipment Use ditions 1	tabilization 7 Id HAC Id HAC 237	n): H Con	_ · · · · · · · · · · · · · · · · · · ·	POCKET POCKE	PAL T PAL	71
	Comm	ents							
	NO		Laboratory f						Il surface and

Site Name <u>*</u>	AMES-STORY	Environmental	LANDFIL	Permit No	<u> ୫</u> 5-	SDP-	13-91P
Monitoring W	Vell/Piezometer No.	MW-35	5	Upgradient_	_1	-,	
Name of per	son sampling	RICHARD FRE	EMAN	Downgradie	<u>nı</u>		
,	A.) MONITORING	WELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?	YES		Standing V If yes, expl	Vater or Litt a <u>in</u>	er? No
1	B.) GROUNDWATI	ER ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Use	of inner well casing 20.0 ed 50LINT	Inside	Grour Casing Diam	nd Elevatio neter (in inc		
	Gro	undwater Level (+/- 0	.01 foot be	elow top of in	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r .	Groundwa Elevation	
	Before Purging *After Purging *Before Sampling	3-7-04 3-7-04 11:3	3 4	12.66 12.66 12.66			· .
	C.) WELL PURGIN	ig ·					
	No.of Well Vol	ater Removed from W umes (based on curre ped/bailed dry?					
	Equipment us Bailer typ Pump ty If not dec	be MC	eaning	_	ted Bailer ted Bailer		
•	D.) FIELD MEASU	REMENT					
	Temperat Equ pH Equ Specific Cond	ure Sapilization in the stabilization in the stabil	on): :H Con	Units Pary Port Pary Units Company	POCKET POCKE	FAL TAL	ħL
	Comments						
		Laboratory Report an dwater monitoring po					II surface and

Site Name 🛚 💆	MES-STORY EN	vironmental	LANDFIL	Permit No	<u> ଅଟ-</u>	SDP-1	3-91P
Monitoring We	ell/Piezometer No.	MW-36	>	Upgradient _	<u> </u>		
Name of pers	on sampling	RICHARD FRE	EMAN	Downgradie <u>r</u>	Il:		
Α) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pro	operly Capped?	YES		Standing W f yes, expla	ater or Litter	2 No
В	.) GROUNDWATER	ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Used	53.5		Groun Casing Diam	d Elevatior eter (in inc		
	Ground	lwater Level (+/- 0	.01 foot be	elow top of inr	ner casing,	MSL):	
		Date/Time		Depth to Groundwater	r	Groundwate Elevation	ər
*,	Before Purging After Purging Before Sampling	3/8/04 /4:0	2υ	17.23 50.65 44.0			
c	C.) WELL PURGING	• • •					
	Quantity of Water No.of Well Volum Was well pumped	es (based on curr	ell (gallonent water YES	level) Z. I			
	Equipment used: Bailer type Pump type If not dedica	PVC .	eaning		ed Bailer ed Bailer		
Γ	D.) FIELD MEASURE	MENT					
	pH Equipr Specific Conditio	12. nent Used HAC 7.0 nent Used HA	voly on): H Con TCH C	Units Pary Porpary Units Compar		FAL F FAL XET FA	——————————————————————————————————————
	Comments				, 		
	NOTE: Attach Lab groundw	oratory Report an ater monitoring po					surface and

*Omit if only measuring groundwater elevations.

542-1322

Site Name	AMES-STORY EN	vironmental	LANDFIL	Permit No.	<u>85-</u>	SDP-	<u> 13-91P</u>
Monitoring \	Well/Piezometer No.	MW-37		Upgradient Downgradie	<u>/</u>		
Name of pe	rson sampling T	RICHARD FRE	EMAN	- -	11		
	A.) MONITORING WE	ELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pr If no, explain	operly Capped?	YES		Standing V If yes, expl	Vater or Litt a <u>in</u>	er? No
•	B.) GROUNDWATER	ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL)		
	Depth of Well	inner well casing 30.6 50LLNS1	Inside	Groun Casing Diam	d Elevatio eter (in inc	n <u>947.</u> :hes) Z.C	43 >"
	Ground	dwater Level (+/- 0	.01 foot b	elow top of in:	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r	Groundwa Elevation	
·	Before Purging *After Purging *Before Sampling	3-8-04 3-8-04 14:4	7	8:0 26:43 13:8			
	C.) WELL PURGING						
	No.of Well Volum	Removed from Wes (based on curred/bailed dry?	ent water	level)	<u></u>		
	Equipment used: Bailer type Pump type If not dedic	PVC		''Dedical	ted Bailer ted Bailer		
	D.) FIELD MEASURE	EMENT					
	Teid Measurmen Temperature Equipi pH Equipi Specific Conditio	ns 40° clor ts (after stabilization ment Used HAC ment Used HAC ment Used HAC ment Used HAC	H CON	Units Pary Po Pary Units Company	POCKET TOCKE	TAL TAL	A L
	Comments						
		poratory Report an vater monitoring po					II surface and
	*Omit if only measuri	ng groundwater ele	evations.				

Site Name	AMES-STORY	Environmental	LANDFILL	Permit No	85-5	SDP-	13-91P
Monitoring '	Well/Piezometer No	. MW-3		Upgradient _ Downgradien	nt c	<u>-</u>	
Name of pe	erson sampling	RICHARD FRE		DOWNSIAGIO <u>I</u>	11 /		
	A.) MONITORING	WELL/PIEZOMETER	CONDITIO	ONS			
	Well/Piezomete If no, exp <u>lain</u>	r Properly Capped?_	YES		Standing Wa f yes, expla		er? No
	B.) GROUNDWAT	ER ELEVATION ME	ASUREMEI	NT (+/- 0.01 f	foot, MSL)		
	Elevation: Top Depth of Well Equipment Us		Inside	9 Groun Casing Diam	d Elevation eter (in inch	934.0 nes) z.c	か 5
	Gro	oundwater Level (+/- 0	0.01 foot be	low top of inr	ner casing, I	MSL):	
		Date/Time		Depth to Groundwater		Groundwa Elevation	ter
÷ .	Before Purging *After Purging *Before Sampling	3/8/04 3/8/04 12:2	5	17:24 52:57 29:49			- - -
	C.) WELL PURGI	NG					
	No.of Well Vo	ater Removed from V lumes (based on cur nped/bailed dry?	Vell (gallons rent water le 199	evel) / ·			
	Equipment us Bailer ty Pump ty If not de	rpe PVC	leaning		ted Bailer ted Bailer		
	D.) FIELD MEAS	UREMENT					
	Tempera Ec pHEc Specific Con	nents (after stabilizat liture 1 Z juipment Used HA 7 · I juipment Used H	ion): CH Com	Units Pary Pary Units Units	POCKET:	FAL FAL	Ā L
	Comments				abouise (se	entions of a	Il surface and
•	NOTE: Attach	Laboratory Report a indwater monitoring p	oints. One	nap per sam	pling round		ii suriace ariu

Site Name	AMES-STORY &	Environmental	LANDFIL	Permit No.	85-5	DP - 13 -	-91P
Monitoring '	Well/Piezometer No.	MW-39		_Upgradient			
Name of pe	erson sampling	RICHARD FRE	EMAN	Downgradie -	nı 🗸		
	A.) MONITORING V	VELL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer	Properly Capped?	YES		Standing Wa If yes, expla <u>i</u>	nter or Litter? <i>\</i> N	10
•	B.) GROUNDWATE	R ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL)		
	Elevation: Top Depth of Well Equipment Use	30.2		93 Ground Casing Dian	nd Elevation neter (in inch	933 · 9 es) z·o"	Le
	Grou	indwater Level (+/- 0.	.01 foot b	elow top of in	ner casing, N	MSL):	
		Date/Time		Depth to Groundwate		Groundwater Elevation	
	Before Purging *After Purging *Before Sampling	3/8/09 3/8/04 12:54	 	15.09 23.94 16.66	- - -		
	C.) WELL PURGIN	G ,					
	No.of Well Volu	ter Removed from Wumes (based on curre bed/bailed dry?					
	Equipment use Bailer typ Pump typ If not ded	e PVC	eaning		ted Bailer		
	D.) FIELD MEASU	REMENT					
	Field Measurm Temperati Equ pH Equ Specific Condi	ipment Used HAC	on):	Units APANY ONE ONY Units COMPAN	POCKET	AL FAL	
	Comments	<u> </u>					
		aboratory Report an				ations of all surf	ace and

Site Name	AMES-STORY EN	vironmental	LANDFIL	Permit No.	<u> ୫</u> 5-	SDP-	13-91P
Monitoring	Well/Piezometer No.	MW-40	·	_Upgradient _			
Name of pe	erson sampling T	RICHARD FRE	EMAN	Downgradie	nt 🖊		
	A.) MONITORING WE	LL/PIEZOMETER	CONDIT	IONS			
	Well/Piezometer Pr If no, explain	operly Capped? _	YES			Vater or Litt la <u>in</u>	er? No
	B.) GROUNDWATER	ELEVATION MEA	SUREME	ENT (+/- 0.01	foot, MSL))	
	Elevation: Top of Depth of Well Equipment Used	inner well casing ZO' SULINST	933 ·c Inside	⊇7 Grour Casing Diam	nd Elevation neter (in inc	n 931. ches) z.c	
	Ground	iwater Level (+/- 0	.D1 foot b	elow top of in	ner casing	, MSL):	
		Date/Time		Depth to Groundwate	r	Groundwa Elevation	
	Before Purging *After Purging *Before Sampling	3/11/09 3/11/04 /Zio	5	5.76 17:35 20 20:70 17:	7 35		
	C.) WELL PURGING						
	Quantity of Water No.of Well Volum Was well pumper	Removed from W les (based on curr d/bailed dry?	ent water	ns) 7.1 level) 3			
	Equipment used: Bailer type Pump type If not dedic		eaning		ted Bailer ted Bailer		
	D.) FIELD MEASURE	EMENT .					
	Temperature Equip pH Equip Specific Condition	ts (after stabilization) ment Used HA ment Used HA	CH CON	Units APANY OMPANY Units COMPAN	BCKET FOCKE	PAL T PAL	A L
	Comments	,	·				
	NOTE: Attach La	poratory Report an	nd 8-12" x	11" site plan	showing lo	cations of a	ıll surface and

^{*}Omit if only measuring groundwater elevations.

Site Name	AMES-STORY E	vuronmental	LANDFIL	Permit No.	85-	SDP-1	<u>3-91P</u>
Monitoring '	Well/Piezometer No.	MW-4	<u> </u>	Upgradient Downgradie	nt /		
Name of pe	erson sampling 1	RICHARD FRE	EMAN	- -	<u> </u>		
	A.) MONITORING W	ELL/PIEZOMETER	CONDIT	IONS			•
	Well/Piezometer Pi	roperly Capped?	YES		Standing V If yes, expl	Vater or Litte a <u>in</u>	17 No
	B.) GROUNDWATER	ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)		
	Elevation: Top of Depth of Well Equipment Used		Inside	e Groun Casing Diam		n 931.4 ches) 2.0	
	Groun	dwater Level (+/- 0	.01 foot b	elow top of in	ner casing,	MSL):	•
		Date/Time		Depth to Groundwate	г	Groundwat Elevation	er
	Before Purging *After Purging *Before Sampling	3/11/04 3/11/04 12:55		16:13 40:81 25:01			- - - '
	C.) WELL PURGING	·	;				
	No.of Well Volun	r Removed from W nes (based on curro d/bailed dry?	ent water	evel) 3			
	Equipment used Bailer type Pump type If not dedic	D1C		_ 'Dedical	ted Bailer ted Bailer		
	D.) FIELD MEASURE						
	Field Measurmer Temperatur Equip pH Equip Specific Condition	ment Used HAC 7:0 ment Used HA	on): H Con	Units Pary Poppary Units Company		TAL T PAL XET PI	
	Comments						
		boratory Report an vater monitoring po					surface and
	*Omit if only measuri	ng groundwater ele	evations.				

Site Name	AMES-STORY EN	vironmental	LANDFILL	Permit No	85-	SDP-1	3-91P
Monitoring \	Well/Piezometer No.	MW-42		Upgradient	nt V		
vame of pe	rson sampling R	ICHARD FRE	Eman				•
	A.) MONITORING WE	L/PIEZOMETER	CONDITI	ONS			
	Well/Piezometer Pro	perly Capped?_	YES		Standing W f yes, expl	/ater or Litter a <u>in</u>	7 No
	B.) GROUNDWATER	ELEVATION MEA	SUREME	NT (+/- 0.01	foot, MSL)		
	Elevation: Top of in Depth of Well Equipment Used	nner well casing 48·37. 50UN	Inside	어 Groun Casing Diam	d Elevation eter (in inc	n 938.5 hes) z.o.	
	Ground	water Level (+/- 0	.01 foot be	elow top of inr	ner casing,	MSL):	
		Date/Time		Depth to Groundwate	r	Groundwate Elevation	er
	Before Purging *After Purging *Before Sampling	3/8/04 3/8/04 13:5	3	17.8 44.06 28.30			- -
	C.) WELL PURGING	, , .					
	Quantity of Water No.of Well Volume Was well pumped	es (based on curr	vell (gallon ent water l	s) 13'4 evel) 2'7			
	Equipment used: Bailer type Pump type If not dedica	PVC	eaning	_	ted Bailer ted Bailer		
	D.) FIELD MEASURE	MENT					
	Pri Equipn Specific Condition	nent Used HA	CH CON	Units Pary Pary Units Company	POCKE	TAL TPAL XET P	
	Comments				F	,	
	NOTE: Attach Lab groundw	oratory Report ar ater monitoring po	nd 8-12" x pints. One	11" site plan s map per sam	showing lo	cations of all	surface and

Site Name	AMES-STORY	Environmental	TUNDLIF	Permit No	<u>85-</u>	SDP-	<u> 13-911</u>	<u></u>
Monitoring	Well/Piezometer No	. <u>mw-43</u>		Upgradient _ Downgradier	nt			
Name of pe	erson sampling	RICHARD FRE	EMAN	- DOWNIGHAU IO <u>I</u>				
	A.) MONITORING	WELL/PIEZOMETER	RCONDIT	IONS				
	Well/Piezomete If no, exp <u>lain</u>	r Properly Capped?_	YES		Standing V If yes, expl	Vater or Litte a <u>in</u>	er? No	
	B.) GROUNDWAT	ER ELEVATION ME	ASUREME	ENT (+/- 0.01	foot, MSL)			
	Depth of Well	of inner well casing 28·13 sed SOUNS	Inside	Ground Casing Diam	nd Elevation neter (in ind	n 938.0 ches) Z.C	eZ)"	_
	Gro	oundwater Level (+/- (0.01 foot b	elow top of in	ner casing,	MSL):		
•		Date/Time		Depth to Groundwate	r .	Groundwa Elevation	ater	
	Before Purging *After Purging *Before Sampling	3/8/04 3/8/04 14:4	٥	14.38 26.08 17.76				
	C.) WELL PURGI	NG						
·	No.of Well Vo	tater Removed from Volumes (based on curinped/bailed dry?	rent water	level) 3				
	Equipment us Bailer ty Pump ty If not de	/pe		'Dedical	ted Bailer ted Bailer			
•	D.) FIELD MEAS	UREMENT						
	Field Measuri Tempera Ec pH Ec Specific Con	ditions 40° clouments (after stabilization 13° cloument Used 44° cloument Used 44° cloument Used 46° c	ON): CH CON ACH C	Units Down Pormy Onform Units Company	POCKE	T PAL	\ \tau	
	Comments	. 						
	NOTE: Attach grou	Laboratory Report a Indwater monitoring p	nd 8-12" x oints. One	11" site plan s map per sam	showing to pling roun	cations of a d.	ll surface ar	ıd
	*Omit if only mea	suring groundwater el	levations					

te Name AMES- STORY ENV	FORMENTAL LANDE	Permit No.	85-50P	-13-916
onitoring Well/Piezometer No.	SW-1	Date/Time	3/1/04	14:48
ame of person sampling	RICHARD FREEN	127	· 1	
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch	Open Ti Tile with Other			
B.) PURPOSE OF MONITOR	RING POINT			
Upstream Within Landfill	Downstr	ream		
C.) MONITORING POINT CO	ONDITIONS			
General description/cor	ndition of monitoring poi	nt		
Was monitoring point d Was water flowing?	VIG If yes, e	Too little wa estimate quantity estimate depth	ater to sample? good How 41 Mde	No
Was water discolored? Does water have odor? Was ground discolored Litter present?		If yes, desc If yes, desc If yes, desc If yes, desc	ibe below. ibe below.	
Comments				
D.) FIELD MEASUREMENT	-			-
Weather Conditions	30°15 Cloude	· }		
Field Measurments (a Temperature Equipment L pH Equipment L Specific Conditions Equipment L	Jsed HACH COMPA 6.2 Jsed HACH COMP 1017	Units MY POCKET Whits ANY POCKS	PAL T PAL	
Comments				

ite Name AMES- STORY ENVI	ronnental LANDE	Permit No.	85-SDP - 13	-91P
lonitoring Well/Piezometer No.	SW-Z	Date/Time	3/1/04	15:25
ame of person sampling	RICHARD FREEM	MAN		
A.) TYPE OF MONITORING I	POINT	•		
Stream Road Ditch Drainage Ditch	Open T Tile with Other			
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Downst	tream /	· ·	
C.) MONITORING POINT CO	NDITIONS			
General description/con	dition of monitoring po	int		
Was monitoring point dr Was water flowing?	Vec If yes,	Too little wate estimate quantity_ estimate depth	good How	
Was water discolored? Does water have odor? Was ground discolored' Litter present?		If yes, descibe	e below. e below.	,
Comments				
D.) FIELD MEASUREMENT				
Weather Conditions	30°'s cloudy			
Field Measurments (a Temperature Equipment L pH Equipment L Specific Conditions Equipment L	Ised HACH COMPA 1.4 Ised HACH COMP 1025	Units WY FOCKET TO DAY FOCKET Units Pary FOCKET	PAL PAL	
Comments		,		

ite Name AMES- STORY ENV	ורסחוובאדאנ	_ LANDEILL	_Permit No	85-10P	-13-916
fonitoring Well/Piezometer No.	SW-3)	_Date/Time _	3/1/04	
lame of person sampling	RICHARD	FREEMA	7	<u>'</u>	
A.) TYPE OF MONITORING	POINT				
Stream Road Ditch Drainage Ditch		Open Tile Tile with R Other	iser		
B.) PURPOSE OF MONITOR	RING POINT		•		
Upstream Within Landfill		_Downstrea _Other	ım <u>/</u>		•
C.) MONITORING POINT CO	SNOITIONS		•		
General description/col	ndition of monit	toring point	012 0144 grant Adm 10 60		
Was monitoring point d Was water flowing?	Iry? Dr	If yes, esti	Too little wa mate quantity mate depth		
Was water discolored? Does_water have odor' Was ground discolored Litter present?	17		If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below. be below. be below.	
Comments					
D.) FIELD MEASUREMEN Weather Conditions					
Field Measurments (a Temperature Equipment pH Equipment Specific Condition Equipment	Used HACH Used HACH s		_Units y FOCKE Y FOCKE Units Y POCKS	T PAL	
Comments					

Site Name AMES- STORY ENV	FORMENTAL L	ANDELL Permit No	85-50P-	13-910
Monitoring Well/Piezometer No.	SW-4	Date/Time	3/1/04	14:12
Name of person sampling	RICHARD FR	EEMAJ		
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch		en Tile e with Riser ner		
B.) PURPOSE OF MONITOR	RING POINT			
Upstream Within Landfill	Do	wnstream ner		
C.) MONITORING POINT CO	ONDITIONS			
General description/cor	ndition of monitorin	g point		
Was monitoring point d Was water flowing?	yes Ify	es, estimate quantity_	er to sample?) good 0:571 wid	
Was water discolored? Does water have odor? Was ground discolored Litter present?		If yes, descib	e below. e below.	
Comments				
D.) FIELD MEASUREMENT	-			THE PARTY OF THE P
Weather Conditions	30°15 clove	<u>ly</u>		
Field Measurments (a Temperature Equipment L pH Equipment L Specific Conditions Equipment t	Jsed HACH Con (4.9 Jsed HACH C 3622	Units WPANY FOCKET OMPANY FOCKET Units OMPANY POCKET	Pal Pal r Pal	
Comments				

Site Name AMES-STORY ENV	MONMENTAL LAND	Permit No.	85-10P-	13-910
Monitoring Well/Piezometer No.	5w-5	Date/Time	3/1/04	13:24
Name of person sampling	RICHARD FREE	MAN		
A.) TYPE OF MONITORING	POINT			
Stream Road Ditch Drainage Ditch	Open Tile w Other	Tile ith Ris <u>er</u>		
B.) PURPOSE OF MONITOR	ING POINT			
Upstream Within Landfill	Down:	stream		
C.) MONITORING POINT CO	ONDITIONS			
General description/cor	dition of monitoring p	oint		
Was monitoring point di Was water flowing?	最 UCS If yes,	Too little war estimate quantity estimate depth	ter to sample? I good flow 0's ff wid	
Was water discolored? Does water have odor? Was ground discolored Litter present?		If yes, desci If yes, desci If yes, desci If yes, desci	be below. be below.	
Comments				
D.) FIELD MEASUREMENT Weather Conditions	cloudy 30°15	>		
Field Measurments (a Temperature Equipment L pH Equipment L Specific Conditions	1sed HACH COMP 7:5 Ised HACH COM BBG	Units ANY POCKET PANY FOCKET Units	PAL-	
Equipment L Comments	DOOR WHATH COM	YANY FOCKE	1 MAL .	

FORM FOR SURFACE WATER SAMPLING

5w-6	Date/Time _	3/1/04	12:43
		• -	
RICHARD FREEN	1AN		
POINT	•••		
Tile with			
Other		······	
ING POINT		•	
Downst Other	ream		
NDITIONS			
dition of monitoring poi	nt		
y? No 16 yes, e 16 yes, e	estimate quantity	good Flo	<i>Ν</i> υ συ
No No P Fe stained No	If yes, descil	be below. be below.	
cloudy 30°	15		
ter stabilization):	Units		
7.8 sed HACH COMP			
1475 Ised HACH COMP	Units Any Pocks	T PAL	
	Open Tile with Other ING POINT Downst Other NDITIONS dition of monitoring point Y? No 16 yes, e If yes,	Open Tile Tile with Riser Other ING POINT Downstream Other NDITIONS dition of monitoring point Y? No If yes, estimate quantity If yes, estimate depth No If yes, descil No If yes, descil No If yes, descil Too little wat Yes, descil If yes, descil If yes, descil If yes, descil If yes, descil Toucket Toucket	Open Tile Tile with Riser Other ING POINT Downstream Other NDITIONS dition of monitoring point Y? Too little water to sample? You Too little water to sample? You If yes, estimate quantity You If yes, descibe below. If yes, descibe below. Yes, descibe below. Yes, descibe below. If yes, descibe below. Yes, descibe below. If yes, descibe below. If yes, descibe below. Yes, descibe below.

NOTE: Attach Laboratory Report and 8-12" x 11" site plan showing locations of all surface and groundwater monitoring points. One map per sampling round.

ATTACHMENT C Concentration Versus Time Tables & Graphs Water Table System

	<u> </u>		MEAN +	· 			WATER TAE	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	вотн	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L		l													
04/23/91	1.1-Dichloroethene *	7	1			<1	<1	<1	<1	<1		<1				
10/15/91	1,1-Dichloroethene *	7	1			<1	<1		<1	<1		<1				
	1,1-Dichloroethene *	7	1			<1	<1		<1	<1	<1	<1				
03/23/92	1,1-Dichloroethene *	7	1			<1	<1	<1	<1	<1	<1	<1				
09/30/92	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
03/05/93	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
09/21/93	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
03/23/94	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
09/16/94	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
03/16/95	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
09/13/95	1,1-Dichloroethene *	7	1			NT	NT	NT	NT	NT	NT	NT				
03/28/96	1,1-Dichloroethene *	7	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
06/20/96	1,1-Dichloroethene *	7	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
09/13/96	1,1-Dichloroethene *	7	1	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
03/19/97	1,1-Dichloroethene *	7	1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	1,1-Dichloroethene *	7	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
08/30/97	1,1-Dichloroethene *	7	1	NT		NT	ΝT	DRY	NT	NT	NT	NT	NT			
	3 1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	3 1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1-Dichloroethene *	7	1	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	NT	<1	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	1,1-Dichloroethene *	7	1	NT	<1 -	<1	NT	NT	NT	NT	NT	NT	NT	<1 	<1 .	<1 NT
	1,1-Dichloroethene *	7	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2 1,1-Dichloroethene *	7	1	NT	NT	<1	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	2 1,1-Dichloroethene *	7_	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	3 1,1-Dichloroethene *	7	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	3 1,1-Dichloroethene *	<u>/</u>	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT
09/27/2004	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NI	NI
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF

	T						MATER TA	D. = 14/5/10								
			MEAN +					BLE WELLS	D 0 111	BOTH	вотн	DOTU	DOTL	D.G.W	D.G.W	D.G.W
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W			BOTH	BOTH			
DATE	PARAMETER	LEVEL_	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34_	MW35	MW 39	MW 40	MW 43
	ug/L															
04/23/91	1.1.1-Trichloroethane *	200	1			<1	<1	<1	<1	<1		<1				
10/15/91	1,1,1-Trichloroethane *	200	1			<1	<1		<1	<1		<1				
01/23/92	1,1,1-Trichloroethane *	200	1			<1	<1		<1	<1	<1	<1				
	1,1,1-Trichloroethane *	200	1			<1	<1	<1	<1	<1	<1	<1				
09/30/92	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT	NT	NT	NT				
03/05/93	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT	NT	NT	NT				
09/21/93	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT	NT	NT	NT				
03/23/94	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT	NT	NT	NT				
09/16/94	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT	NT	NT	NT				
03/16/95	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT	NT	NT	NT				
09/13/95	1,1,1-Trichloroethane *	200	1			NT	NT	NT	NT ·	NT	NT	NT				
	1,1,1-Trichloroethane *	200	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	1,1,1-Trichloroethane *	200	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	1,1,1-Trichloroethane *	200	1	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT NT			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT NT			
	1,1,1-Trichloroethane *	200	1	NT		NT	NT	DRY DRY	NT NT	NT NT	NT NT	NT NT	NT NT	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT NT	<1 NT	NT <1	NT NT	DRY	NT NT	NT	NT	NT	DRY	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT NT		NT	NT NT	Dry	NT	NT	NT	NT	NT	<1	<1	<1
	1,1,1-Trichloroethane *	200 200	1	NT	<1 <1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane * 1,1,1-Trichloroethane *	200	1	NT	NT	<1	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	,	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1.1.1-Trichloroethane *	200	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	. i	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/21/2004	1,1,1-monoroeutane	200	•												•••	
	Mean Standard Deviation (STD)			ERR ERR	ERR ERR	ERR ERR	ERR ERR		ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR		ERF ERF
	Mean + 2 STD			ERR	ERR	ERR	ERR		ERR	ERR	ERR	ERR	ERR			
	IVICALI T Z S I D			LINK	LINK	ENN	LAN	LIM	LIM	L1(1)	LIXIX	L. (1)	- · · · · · ·			

			MEAN +				WATER TAE	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	вотн	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	wt	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L		1													
04/23/91	1,2-Dichloroethane *	5	0.4			<1	<1	<1	<1	<1		<1				
10/15/91	1,2-Dichloroethane *	5	0.4			<1	<1		<1	<1		<1				
01/23/92	1,2-Dichloroethane *	5	0.4			<1	<1		<1	<1	<1	<1				
03/23/92	1,2-Dichloroethane *	5	0.4			<1	<1	<1	<1	<1	<1	<1				
09/30/92	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
03/05/93	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
09/21/93	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
03/23/94	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
09/16/94	1,2-Dichloroethane *	5	0.4			NT	ŊT	NT	NT	NT	NT	NT				
03/16/95	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
09/13/95	1,2-Dichloroethane *	5	0.4			NT	NT	NT	NT	NT	NT	NT				
03/28/96	1,2-Dichloroethane *	5	0.4	<0.4		NT	NT	NT	NT	NT	NT	NT	<0.4			
06/20/96	1,2-Dichloroethane *	5	0.4	<0.4		NT	NT	NT	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	<0.4		NT	NT	Dry	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	<0.4		NT	NT	DRY	NT	NT	NT	NT	<0.4			
	1,2-Dichloroethane *	5	0.4	<0.4		<0.4	NT	NT	NT	NT	NT	NT	<0.4			
08/30/97	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,2-Dichloroethane *	5	0.4	NT	<0.4	NT	NT	DRY	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	NT	<0.4	NT	DRY	NT	NT	NT	NT	DRY	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	<0.4	NT	NT	Dry	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	NT	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	NT	<0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	<0.4	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	EF
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER

			MEAN +				WATER TAI	BLE WELLS						·		
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	вотн	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
DAIL	ug/L	1 22 7 22	***	11111 07	11.11	20	20									
04/23/91	1,4-Dichlorobenzene *	75	1			<1	<1	<1	<1	<1		<1				
	1.4-Dichlorobenzene *	75	1			<1	<1		<1	<1		<1				
	1.4-Dichlorobenzene *	75	1			<1	<1		<1	<1	<1	<1				
	1,4-Dichlorobenzene *	75	1			<1	<1	<1	<1	<1	<1	<1				
	1,4-Dichlorobenzene *	75	1			МT	NT	NT	NT	NT	NT	NT				
03/05/93	1,4-Dichlorobenzene *	75	1			NT	NT	NT	NT	NT	NT	NT				
09/21/93	1,4-Dichlorobenzene *	75	1			NT	NT	NT	NT	NT	NT	NT				
03/23/94	1,4-Dichlorobenzene *	75	1			NT	NT	NT	NT	NT	NT	NT				
09/16/94	1,4-Dichlorobenzene *	75	1			NT	NT	NT	NT	NT	NT	NT				
03/16/95	1,4-Dichlorobenzene *	75	1			NT	NT	NT	NT	NT	NT	NT				
09/13/95	1,4-Dichlorobenzene *	75	1			NT	NT	NT	NT	NT	NT	NT				
03/28/96	1,4-Dichlorobenzene *	75	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
06/20/96	1,4-Dichlorobenzene *	75	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	1,4-Dichlorobenzene *	75	1	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
03/19/97	1,4-Dichlorobenzene *	75	1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	1,4-Dichlorobenzene *	75	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
	1,4-Dichlorobenzene *	75	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	. 1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT	-4	-4	-4
	1,4-Dichlorobenzene *	75 	1	NT	<1 • • • •	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	1,4-Dichlorobenzene *	75 	1	NT	NT	<1 • • • •	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
	1,4-Dichlorobenzene *	75 	1	NT	<1	NT	NT	Dry	NT	NT	NT	NT	NT	<1	<1 <1	<1
	1,4-Dichlorobenzene *	75 75	1	NT	<1	<1	NT	NT	NT	NT	NT	NT NT	NT NT	<1 NT	NT	<1 NT
	1,4-Dichlorobenzene *	75 75	1	NT	NT	<1	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT	NT
	1,4-Dichlorobenzene *	75	1	NT	NT	<1 NT	NT		NT	NT NT	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene *	75 75	1	NT NT	NT NT	NT NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene *	75 75	1	NT NT	NT	NT	NT NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene *	75 75	1	NT	NT	NT	NT	Dry NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,4-Dichlorobenzene *	75 75	1	NT NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	1,4-Dichlorobenzene *	75	'	IVI	MI	NI	INI	141	(4)	141	141	141		,,,,		
	Mean			ERR	ERR		ERR		ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	EKK	EKK	EKK	EKK	EKR

			MEAN +					BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW
	mg/L															
4/23/91	Arsenic, dissolved	0.05	0.002			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005		< 0.005				
0/15/91	Arsenic, dissolved	0.05	0.002			< 0.005	< 0.005		< 0.005	< 0.005		< 0.005				
1/23/92	Arsenic, dissolved	0.05	0.002			< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005				
3/23/92	Arsenic, dissolved	0.05	0.002			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005				
9/30/92	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
3/05/93	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
9/21/93	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
3/23/94	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
9/16/94	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
3/16/95	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
9/13/95	Arsenic, dissolved	0.05	0.002			NT	NT	NT	NT	NT	NT	NT				
3/28/96	Arsenic, dissolved	0.05	0.002	< 0.005		NT	NT	NT	NT	NT	NT	NT	< 0.005			
6/20/96	Arsenic, dissolved	0.05	0.002	< 0.005		NT	NT	NT	NT	NT	NT	NT	< 0.005			
9/13/96	Arsenic, dissolved	0.05	0.002	< 0.005		NT	NT	Dry	NT	NT	NT	NT	< 0.005			
3/19/97	Arsenic, dissolved	0.05	0.002	NT		NT	NT	NT	NT	NT	NT	NT	NT			
6/18/97	Arsenic, dissolved	0.05	0.002	0.002		< 0.001	NT	NT	NT	NT	NT	NT	0.001			
8/30/97	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
3/10/98	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
9/21/98	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
3/18/99	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
9/21/99	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
/21/2000	Arsenic, dissolved	0.05	0.002	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
/28/2000	Arsenic, dissolved	0.05	0.002	NT	< 0.001	NT	NT	DRY	NT	NT	NT	NT	NT	0.001	< 0.001	<0.
/28/2000	Arsenic, dissolved	0.05	0.002	NT	NT	< 0.001	NT	DRY	NT	NT	NT	NT	DRY	0.001	< 0.001	<0.
/27/2000	Arsenic, dissolved	0.05	0.002	NT	0.002	NT	NT	Dry	NT	NT	NT	NT	NT	0.003	0.002	0.0
/28/2001	Arsenic, dissolved	0.05	0.002	NT	< 0.001	< 0.001	NT	NT	NT	NT	NT	NT	NT	0.002	0.001	0.0
/02/2001	Arsenic, dissolved	0.05	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
/19/2002	Arsenic, dissolved	0.01	0.002	NT	NT	< 0.001	NT	Dry	NT	NT	NT	NT	NT	NT	NT	N
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Arsenic, dissolved	0.01	0.002	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	١
JOILITZOOT	Publino, dibbolyed	0.01	0.002		13.1				11.			111				
	Mean			0.002	0.002								0.001	0.00175	0.0015	
	Standard Deviation (STD)			0	0								0	0.000829	0.0005	
	Mean + 2 STD			0.002	0.002	ERR	ERR	ERR	ERR	ERR	ERR	ERR	0.001	0.003408	0.0025	

			MEAN +				WATER TAE	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.V
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
	mg/L									100000						
4/23/91	Barium, dissolved	2.000	0.054			0.022	0.156	0.109	0.162	0.14		0.098				
0/15/91	Barium, dissolved	2.000	0.054			0.040	0.144		0.152	0.193		0.200				
1/23/92	Barium, dissolved	2.000	0.054			0.039	0.142		0.153	0.066	0.065	0.063				
3/23/92	Barium, dissolved	2.000	0.054			0.040	0.116	0.188	0.138	0.058	0.055	0.055				
09/30/92	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
03/16/95	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Barium, dissolved	2.000	0.054			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Barium, dissolved	2.000	0.054	0.051		NT	NT	NT	NT	NT	NT	NT	0.182			
06/20/96	Barium, dissolved	2.000	0.054	0.042		NT	NT	NT	NT	NT	NT	NT	0.187			
09/13/96	Barium, dissolved	2.000	0.054	0.046		NT	NT	Dry	NT	NT	NT	NT	0.211			
03/19/97	Barium, dissolved	2.000	0.054	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	Barium, dissolved	2.000	0.054	0.039		0.026	NT	NT	NT	NT	NT	NT	0.166			
08/30/97	Barium, dissolved	2.000	0.054	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Barium, dissolved	2.000	0.054	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Barium, dissolved	2.000	0.054	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Barium, dissolved	2.000	0.054	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Barium, dissolved	2.000	0.054	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
3/21/2000	Barium, dissolved	2.000	0.054	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
6/28/2000	Barium, dissolved	2.000	0.054	NT	0.330	NT	NT	DRY	NT	NT	NT	NT	NT	0.079	0.109	0.402
9/28/2000	Barium, dissolved	2.000	0.054	NT	NT	0.036	NT	DRY	NT	NT	NT	NT	DRY	0.039	0.088	0.473
2/27/2000	Barium, dissolved	2.000	0.054	NT	0.328	NT	NT	dry	NT	NT	NT	NT	NT	0.067	0.103	0.530
3/28/2001	Barium, dissolved	2.000	0.054	NT	0.318	0.035	NT	NT	NT	NT	NT	NT	NT	0.058	0.100	0.21
9/02/2001	Barium, dissolved	2.000	0.054	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3/19/2002	Barium, dissolved	2.000	0.054	NT	NT	0.042	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
9/19/2002	Barium, dissolved	2.000	0.054	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
3/14/2003	Barium, dissolved	2.000	0.054	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
0/00/0000	Barium, dissolved	2.000	0.054	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
9/29/2003	Barium, dissolved	2.000	0.054	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3/08/2004			0.054	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT

			<i>m</i>												<u>-</u>	
			MEAN +				NATER TAB									
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	ВОТН	вотн	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L	_	_					_								
04/23/91	Benzene *	5	1			<1	<1	<1	<1	<1		<1				
10/15/91	Benzene *	5	1			<1	<1		<1	<1		<1				
01/23/92	Benzene *	5	1			<1	<1		<1	<1	<1	<1				
03/23/92	Benzene *	5	1			<1	<1	<1	<1	<1 -	<1	<1				
09/30/92	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
03/16/95	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Benzene *	5	1			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Benzene *	5	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
06/20/96	Benzene *	5	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
09/13/96	Benzene *	5	1	<1		NT	NT	Dry	NT	NT	NT	NT	<1			
03/19/97	Benzene *	5	1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	Benzene *	5	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
08/30/97	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Benzene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Benzene *	5	1	NT	<1	NT	NT	DRY	NT	NT	ΝT	NT	NT	<1	<1	<1
09/28/2000	Benzene *	5	1	NT	<1	<1	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
12/27/2000	Benzene *	5	1	NT	<1	NT	NT	Dry	NT	NT	NT	NT	NT	<1	<1	<1
03/28/2001	Benzene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
09/02/2001	Benzene *	5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Benzene *	5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +				WATER TA	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	вотн	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24_	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
<u> </u>	mg/L										-					
04/23/91	Cadmium, dissolved	0.005	0.001			<0.001	<0.001	<0.001	<0.001	<0.001		<0.001				
10/15/91	Cadmium, dissolved	0.005	0.001			<0.001	<0.001		<0.001	<0.001		<0.001				
01/23/92	Cadmium, dissolved	0.005	0.001			< 0.001	<0.001		<0.001	<0.001	<0.001	<0.001				
03/23/92	Cadmium, dissolved	0.005	0.001			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
09/30/92	Cadmium, dissolved	0.005	0.001			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Cadmium, dissolved	0.005	0.001			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Cadmium, dissolved	0.005	0.001			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Cadmium, dissolved	0.005	0.001			NT	NT	NŤ	NT	NT	NT	NT				
09/16/94	Cadmium, dissolved	0.005	0.001			NT	NT	NŤ	NT	NT	NT	NT				
03/16/95	Cadmium, dissolved	0.005	0.001			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Cadmium, dissolved	0.005	0.001			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Cadmium, dissolved	0.005	0.001	<0.001		NT	NT	NT	NT	NT	NT	NT	<0.001			
06/20/96	Cadmium, dissolved	0.005	0.001	<0.001		NT	NT	NT	NT	NT	NT	NT	<0.001			
09/13/96	Cadmium, dissolved	0.005	0.001	<0.001		NT	NT	Dry	NT	NT	NT	NT	<0.001			
03/19/97	Cadmium, dissolved	0.005	0.001	<0.001		NT	NT	DRY	NT	NT	NT	NT	<0.001			
06/18/97	Cadmium, dissolved	0.005	0.001	<0.001		<0.001	NT	NT	NT	NT	NT	NT	<0.001			
08/30/97	Cadmium, dissolved	0.005	0.001	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Cadmium, dissolved	0.005	0.001	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Cadmium, dissolved	0.005	0.001	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Cadmium, dissolved	0.005	0.001	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Cadmium, dissolved	0.005	0.001	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Cadmium, dissolved	0.005	0.001	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Cadmium, dissolved	0.005	0.001	NT	<0.001	NT	NT	DRY	NT	NT	NT	NT	NT	<0.001	<0.001	<0.001
09/28/2000	Cadmium, dissolved	0.005	0.001	NT	<0.001	<0.001	NT	DRY	NT	NT	NT	NT	NT	<0.001	<0.001	<0.001
12/27/2000	Cadmium, dissolved	0.005	0.001	NT	<0.001	NT	NT	Dry	NT	NT	NT	NT	NT	<0.001	<0.001	<0.001
03/28/2001	Cadmium, dissolved	0.005	0.001	NT	<0.001	<0.001	NT	NT	NT	NT	NT	NT	NT	<0.001	<0.001	<0.001
09/02/2001	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	<0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NŤ	NT
	Mean			ERR	ERR	ERR			ERR		ERR		ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR		ERR	ERR		ERR		ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

		1	MEAN +				WATER TAE	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	BOTH	вотн	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	ug/L	·				-					_					
04/23/91	Carbon tetrachloride *	5	0.3			<1	<1	<1	<1	<1		<1				
10/15/91	Carbon tetrachloride *	5	0.3			<1	<1		<1	<1		<1				
01/23/92	Carbon tetrachloride *	5	0.3			<1	<1		<1	<1	<1	<1				
03/23/92	Carbon tetrachloride *	5	0.3			<1	<1	<1	<1	<1	<1	<1				
09/30/92	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Carbon tetrachloride *	5	0.3			ΝT	NT	NT	NT	NT	NT	NT				
09/16/94	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/16/95	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Carbon tetrachloride *	5	0.3			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Carbon tetrachloride *	5	0.3	<0.3		NT	NT	NT	NT	NT	NT	NT	<0.3			
06/20/96	Carbon tetrachloride *	5	0.3	<0.3		NT	NT	NT	NT	NT	NT	NT	<0.3			
09/13/96	Carbon tetrachloride *	5	0.3	<0.3		NT	NT	Dry	NT	NT	NŤ	NT	<0.3			
03/19/97	Carbon tetrachloride *	5	0.3	NΤ		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	Carbon tetrachloride *	5	0.3	<0.3		<0.3	NT	NT	NT	NT	NT	NT	<0.3			
08/30/97	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Carbon tetrachloride *	5	0.3	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Carbon tetrachloride *	5	0.3	NT		NŢ	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Carbon tetrachloride *	5	0.3	NT		NŤ	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	NT	NT	DRY	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
09/28/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	DRY	NT	NT	NT	NT	DRY	<0.3	<0.3	<0.3
12/27/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	NT	NT	Dry	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
03/28/2001	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
09/02/2001	Carbon tetrachloride *	5	0.3	NT	NT	<0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Carbon tetrachloride *	5	0.3	NT	NT	<0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	ΝT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF

			MEAN +			1	WATER TAE	BLE WELLS									
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W	
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43	
	mg/L																
4/23/91	Chemical Oxygen Demand		20			67.8	5.2	7.5	12.8	33.4		120.1					
0/15/91	Chemical Oxygen Demand		20			64.8	<10		37.2	17.2		14.3					
1/23/92	Chemical Oxygen Demand		20			84.1	<10		<10	12	33.4	<10					
3/23/92	Chemical Oxygen Demand		20			119	<10	<10	<10	20	54	10					
9/30/92	Chemical Oxygen Demand		20				<10	24	77	230	28	107					
3/05/93	Chemical Oxygen Demand		20			50.8	<10		<10	<10	<10	<10					
9/21/93	Chemical Oxygen Demand		20			47.3	<10	<10	<10	<10	<10	<10					
3/23/94	Chemical Oxygen Demand		20			64	<10	<10	<10	<10	19	<10					
9/16/94	Chemical Oxygen Demand		20			52	<10	NT	<10	<10	13	<10					
3/16/95	Chemical Oxygen Demand		20			57	29	NT	23	39	69	29					
9/13/95	Chemical Oxygen Demand	_	20			34	<10	NT	<10	<10	<10	<10					
3/28/96	Chemical Oxygen Demand		20	<10		26	<10	NT	<10	<10	<10	<10	<10				
06/20/96	Chemical Oxygen Demand		20	<10		NT	NT	NT	NT	NT	NT	NT	10				
9/13/96	Chemical Oxygen Demand		20	<10		18	<10	Dry	<10	<10	12	<10	<10				
3/19/97	Chemical Oxygen Demand		20	<10		19	<10	<10	13	<10	14	<10	<10				
06/18/97	Chemical Oxygen Demand Chemical Oxygen Demand		20	<10		27	NT	NT	NT	NT	NT	NT	<10				
	, 0																
8/30/97	Chemical Oxygen Demand	3-7-2	20	<10		<10	<10	DRY	<10	<10	<10	<10	<10				
3/10/98	Chemical Oxygen Demand		20	<10		<10	<10	DRY	13	<10	<10	<10	<10				
9/21/98	Chemical Oxygen Demand	-	20	<10		<10	<10	DRY	<10	<10	11	<10	<10				
3/18/99	Chemical Oxygen Demand		20	<10		<10	<10	DRY	<10	<10	<10	<10	<10				
9/21/99	Chemical Oxygen Demand		20	<10		<10	<10	DRY	<10	11	<10	16	<10				
3/21/2000	Chemical Oxygen Demand		20	NT		<10	<10	DRY	<10	<10	<10	55	NT				
5/28/2000	Chemical Oxygen Demand		20	NT	<10	NT	NT	DRY	NT	NT	NT	NT	NT	11	<10	89	
9/28/2000	Chemical Oxygen Demand		20	<10	20	11	<10	DRY	<10	<10	<10	<10	DRY	<10	<10	54	
2/27/2000	Chemical Oxygen Demand		20	NT	<10	NT	NT	Dry	NT	NT	NT	NT	NT	<10	<10	61	
3/28/2001	Chemical Oxygen Demand		20	<10	11	<10	<10	<10	27	<10	<10	28	<10	<10	<10	<10	
9/02/2001	Chemical Oxygen Demand		20	<10	19	11	<10	NT	14	<10	17	19	11	<10	<10	11	
3/19/2002	Chemical Oxygen Demand		20	<10	<10	24	<10	Dry	19	<10	17	36	14	<10	<10	23	
9/19/2002	Chemical Oxygen Demand		20	<10	12	11	10	Dry	16	<10	19	15	<10	18	<10	17	
3/14/2003	Chemical Oxygen Demand		20	<10	12	28	<10	Dry	20	<10	19	15	<10	18	<10	17	- 4
9/29/2003	Chemical Oxygen Demand		20	<10	12	11	10	Dry	16	<10	19	15	<10	18	<10	17	JU
3/08/2004	Chemical Oxygen Demand	-	20	20	<10	17	18	12	29	<10	17	36	<10	<10	<10	18	1
9/27/2004	Chemical Oxygen Demand		20	<10	<10	17	17	12	30	16	37	21	27	<10	<10	<10	
			20		100 B.W.						0.50	-	- 		000000	5000	
	Mean			20	14.33333	39.65714	14.86667	13.875	25.15385	47.325	24.9	35.76	15.5	16.25	ERR	34.11111	
	Standard Deviation (STD)			0	3.681787	28.24565	7.691265	6.12755	16.77308	69.67438	15.74484	32.63008	6.800735	3.031089	ERR	25.6621	
	Mean + 2 STD			20	21.69691	96.14844	30.2492	26.1301	58.70001	186.6738	56.38968	101.0202	29.10147	22.31218	ERR	85.4353	

	3.0	Secondary	MEAN +				WATER TAE	BLE WELLS								
		MCL	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.V
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
	mg/L															
04/23/91	Chloride	250	13.68553			65	23.5	2.5	9	13.5		6				
10/15/91	Chloride	250	13.68553			47.6	19.33		6.6	17.4		6.6				
01/23/92	Chloride	250	13.68553			50.9	21.5		8.9	43.5	44.6	10				
03/23/92	Chloride	250	13.68553			48.1	23.2	8.5	8.5	70.8	70.8	9				
09/30/92	Chloride	250	13.68553				23	5	8	83	28	3				
03/05/93	Chloride	250	13.68553			59.2	23.5		<10	101	22.5	<10				
09/21/93	Chloride	250	13.68553			90	31.8	13.7	13.7	20	26	<10				
03/23/94	Chloride	250	13.68553			88.6	38.7	10.4	14.1	65.1	29.2	<10				
09/16/94	Chloride	250	13.68553			79	41	NT	16	82	21	<10				
03/16/95	Chloride	250	13.68553			55	45	NT	12	76	27	<10				
09/13/95	Chloride	250	13.68553			52	42	NT	15	69	22	15				
03/28/96	Chloride	250	13.68553	9		67	47	NT	13	173	22	8.9	30			
06/20/96	Chloride	250	13.68553	6.7		NT	NT	NT	NT	NT	NT	NT	44			
09/13/96	Chloride	250	13.68553	5.1		129	48.6	Dry	14.9	5.3	23.6	7.1	54.2			
03/19/97	Chloride	250	13.68553	<10		153	53	<10	32	23	38	17	96			
06/18/97	Chloride	250	13.68553	<10		125	NT	NT	NT	NT	NT	NT	95			
08/30/97	Chloride	250	13.68553	<10		109	49	DRY	25	30	19	<10	86			
03/10/98	Chloride	250	13.68553	<10		120	49	DRY	41	72	24	10	37			
09/21/98	Chloride	250	13.68553	<10		93	38	DRY	33	31	19	10	81			
03/18/99	Chloride	250	13.68553	<10		97	38	DRY	31	83	21	15	29			
09/21/99	Chloride	250	13.68553	<10		73	31	DRY	31	52	20	26	67			
3/21/2000	Chloride	250	13.68553	NT		249	28	DRY	25	55	23	45	NT			
6/28/2000	Chloride	250	13.68553	NT	28	NT	NT	DRY	NT	NT	NT	NT	NT	42	65	285
9/28/2000	Chloride	250	13.68553	<10	59	78	39	DRY	31	124	24	13	DRY	36	22	
2/27/2000	Chloride	250	13.68553	NT	46	NT	NT	Dry	NT	NT	NT	NT	NT	49	46	210
3/28/2001	Chloride	250	13.68553	12	38	122	26	12	27	229	24	105	87	40	54	74
9/02/2001	Chloride	250	13.68553	<10	48	96	26	NT	38	135	29	56	150	45	23	71
3/19/2002	Chloride	250	13.68553	10	73	159	37	Dry	32	142	53	52	179	49	56	119
9/19/2002	Chloride	250	13.68553	10	67	120	26	Dry	31	181	44	25	111	43	35	72
3/14/2003	Chloride	250	13.68553	<10	85	102	30	Dry	25	163	383	34	181	53	30	129
9/29/2003	Chloride	250	13.68553	10	52	103	22	Dry	41	165	30	23	141	45	25	81
3/08/2004	Chloride	250	13.68553	10	71	143	14	25	50	197	45	43	149	42	47	94
9/27/2004	Chloride	250	13.68553	12	56	100	15	25	35	49	51	21	114	30	43	60
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
	Mean			9.422222	56.4	99.83571	32.72862	12.7625	23.84643	87.95172	43.84074	24.37391	96.17778	43.09091	40.54545	

	1		MEAN +				WATER TAE	BLE WELLS					•			
ĺ		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	вотн	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25_	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
D/ C/ L	mg/L		· · · · · ·													
04/23/91	Chromium, dissolved	0.1	0.03			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		<0.03				
10/15/91	Chromium, dissolved	0.1	0.03			< 0.03	< 0.03		< 0.03	<0.03		<0.03				
01/23/92	Chromium, dissolved	0.1	0.03			< 0.03	< 0.03		< 0.03	< 0.03	<0.03	< 0.03				
03/23/92	Chromium, dissolved	0.1	0.03			< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03				
09/30/92	Chromium, dissolved	0.1	0.03			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Chromium, dissolved	0.1	0.03	•		NT	NT	NT	NT	NT	NT	NT				
09/21/93	Chromium, dissolved	0.1	0.03			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Chromium, dissolved	0.1	0.03			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Chromium, dissolved	0.1	0.03			NT	NT	NT	NT	NT	NT	NT				
03/16/95	Chromium, dissolved	0.1	0.03			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Chromium, dissolved	0.1	0.03			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Chromium, dissolved	0.1	0.03	< 0.03		NT	NT	NT	NT	NT	NT	NT	<0.03			
06/20/96	Chromium, dissolved	0.1	0.03	< 0.03		NT	NT	NT	NT	NT	NT	NT	< 0.03			
09/13/96	Chromium, dissolved	0.1	0.03	< 0.03		NT	NT	Dry	NT	NT	NT	NT	<0.03			
03/19/97	Chromium, dissolved	0.1	0.03	NT		NT	NT	NŤ	NT	NT	NT	NT	NT			
06/18/97	Chromium, dissolved	0.1	0.03	<0.03		<0.03	NT	NT	NT	NT	NT	NT	< 0.03			
08/30/97	Chromium, dissolved	0.1	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Chromium, dissolved	0.1	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/98	Chromium, dissolved	0.1	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Chromium, dissolved	0.1	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Chromium, dissolved	0.1	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Chromium, dissolved	0.1	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Chromium, dissolved	0.1	0.03	NT	< 0.03	NT	NT	DRY	NT	NT	NT	NT	NT	< 0.03	< 0.03	<0.03
09/28/2000	Chromium, dissolved	0.1	0.03	NT	NT	< 0.03	NT	DRY	NT	NT	ΝT	NT	DRY	< 0.03	< 0.03	<0.03
12/27/2000	Chromium, dissolved	0.1	0.03	NT	< 0.03	NT	NT	Dry	NT	NT	NT	NT	NT	< 0.03	< 0.03	<0.03
03/28/2001	Chromium, dissolved	0.1	0.03	NT	< 0.03	< 0.03	NT	NŤ	NT	NT	NT	NT	NT	< 0.03	< 0.03	< 0.03
09/02/2001	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002		0.1	0.03	NT	NT	< 0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR		ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR		ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +				WATER TAE	BLE WELLS								
DATE	PARAMETER	ACTION LEVEL	2 STD WT	U.G.W MW-37	D.G.W MW 6	D.G.W MW 28	D.G.W MW 23	D.G.W MW 24	D.G.W MW 31	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.G.W MW 39	D.G.W MW 40	D.G.V MW 4
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		77.													
03/16/95 C	onductivity, mv		2028.477			740	390	DRY	420	510	420	550				
09/13/95 C	onductivity, mv	-	2028.477			890	690	DRY	760	770	720	660				
03/28/96 C	onductivity, mv		2028.477	500		720	590	DRY	650	640	500	460	520			
06/20/96 C	onductivity, mv		2028.477	640		NT	NT	NT	NT	NT	NT	NT	460			
09/13/96 C	onductivity, mv		2028.477	560		690	560	Dry	630	60	500	570	440			
03/19/97 C	onductivity, mv		2028.477	800		750	640	500	800	620	590	580	600			
06/18/97 C	onductivity, my		2028.477	530		540	NT	NT	NT	NT	NT	NT	380			
08/30/97 C	onductivity, mv		2028.477	700		670	560	DRY	350	540	410	490	490			
03/10/98 C	onductivity, my		2028.477	860		710	710	DRY	940	510	360	470	390			
09/21/98 C	onductivity, mv		2028.477	650		590	640	DRY	720	460	590	540	490			
	onductivity, my		2028.477	1600		976	1414	DRY	1683	1370	902	1438	1005			
09/21/99 C	onductivity, mv		2028.477	650		590	640	DRY	720	460	590	540	490			
	onductivity, my		2028.477	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	onductivity, mv		2028.477	NT	1138	NT	NT	DRY	NT	NT	NT	NT	NT	1074	884	148
	onductivity, my		2028.477	688	466	686	1268	DRY	1673	1083	1009	1209	DRY	1324	923	189
/27/2000 C	onductivity, my		2028.477	NT	1252	NT	NT	Dry	NT	NT	NT	NT	NT	1224	960	12
/28/2001 C	onductivity, my		2028.477	1949	1532	938	1730	1190	1919	1161	1730	3000	1246	1622	1266	152
/02/2001 C	onductivity, mv		2028.477	1583	1446	NT	1404	NT	1670	1455	1098	1455	1889	1354	885	12
	onductivity, my		2028.477	NT	1590	1607	1570	Dry	1966	1490	1313	NT	1167	1470	1146	119
/19/2002 C	onductivity, my		2028.477	1530	1521	1395	1420	Dry	1903	1225	1182	1287	1209	1235	1081	136
/14/2003 C	onductivity, my		2028.477	1129	1379	1358	1060	Dry	928	833	732	1020	709	1201	926	
/29/2003 C	conductivity, mv		2028.477	1185	1018	890	1159	Dry	1328	1241	890	1055	886	1035	819	114
	conductivity, mv		2028.477	1647	1225	1294	1460	1138	1947	1360	1154	1237	1124	1446	955	119
2/27/2004 C	conductivity, my		2028.477	1819	1673	1580	1398	1138	1870	1546	1300	1218	995	1588	1310	12

			14E 11				MATER TA	BLE WELLS								
			MEAN +	11014	D 0 141			D.G.W	D.G.W	вотн	ВОТН	BOTH	вотн	D.G.W	D.G.W	D.G.W
-	242445752	ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W		MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24_	IVIVV 31	10100 23	IVIVV 33	10100 34	IVIVV33	10100 39	10100 40	10100 43
	mg/L	4.0	0.00			-0.00	-0.00	-0.00	<0.03	<0.03		<0.03				
	Copper, dissolved	1.3	0.03			<0.03	< 0.03	<0.03	<0.03	<0.03 <0.03		<0.03 <0.03				
	Copper, dissolved	1.3	0.03			<0.03	< 0.03				<0.03					
	Copper, dissolved	1.3	0.03			<0.03	<0.03		< 0.03	< 0.03	<0.03	< 0.03				
	Copper, dissolved	1.3	0.03			<0.03	<0.03	<0.03	<0.03	<0.03	<0.03 NT	<0.03 NT				
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT	NT					
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT		NT				
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT	NT	NT				
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT	NT	NT				
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT	NT	NT				
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT	NT	NT				
	Copper, dissolved	1.3	0.03			NT	NT	NT	NT	NT	NT	NT				
	Copper, dissolved	1.3	0.03	<0.03		NT	NT	NT	NT	NT	NT	NT	<0.03			
06/20/96	Copper, dissolved	1.3	0.03	<0.03		NT	NT	NT	NT	NT	NT	NT	<0.03			
	Copper, dissolved	1.3	0.03	<0.03		NT	NT	Dry	NT	NT	NT	NT	<0.03			
	Copper, dissolved	1.3	0.03	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	Copper, dissolved	1.3	0.03	<0.03		<0.03	NT	NT	NT	NT	NT	NT	<0.03			
08/30/97	Copper, dissolved	1.3	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Copper, dissolved	1.3	0.03	NT		NT	NT	DRY	NT	NT	NŤ	NT	NT			
	Copper, dissolved	1.3	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Copper, dissolved	1.3	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Copper, dissolved	1.3	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Copper, dissolved	1.3	0.03	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Copper, dissolved	1.3	0.03	NT	<0.03	NT	NT	DRY	NT	NT	NT	NT	NT	<0.03	<0.03	< 0.03
09/28/2000	Copper, dissolved	1.3	0.03	NT	NT	< 0.03	NT	DRY	NT	NT	NT	NT	DRY	<0.03	<0.03	< 0.03
12/27/2000	Copper, dissolved	1.3	0.03	NT	<0.03	NT	NT	Dry	NT	NT	NT	NT	NT	<0.03	<0.03	< 0.03
03/28/2001	Copper, dissolved	1.3	0.03	NT	< 0.03	<0.03	NT	NT	NT	NT	NT	NT	NT	<0.03	<0.03	< 0.03
09/02/2001	Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	2 Copper, dissolved	1.3	0.03	NT	NT	<0.005	NT	NT	NT	NT	NT	NT	NŤ	NT	NT	NT
09/19/2002	Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Copper, dissolved	1.3	0.03	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Copper, dissolved	1.3	0.03	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER
	Standard Deviation (STD)			ERR	ERR							ERR	ERR	ERR	ERR	ERI
	Mean + 2 STD			ERR	ERR	ERR							ERR	ERR	ERR	ERF

			MEAN +				WATER TAI	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.\
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW
	mg/L															
04/23/91	Iron, dissolved		8.004717			0.159	< 0.03	< 0.03	< 0.03	0.177		0.133				
10/15/91	Iron, dissolved		8.004717			0.035	0.452		0.636	0.205		0.767				
01/23/92	Iron, dissolved		8.004717			< 0.03	< 0.03		< 0.03	< 0.03	< 0.03	< 0.03				
03/23/92	Iron, dissolved		8.004717			0.164	< 0.03	0.076	0.068	0.121	0.052	< 0.03				
09/30/92	Iron, dissolved		8.004717				< 0.03	< 0.03	< 0.03	< 0.03	0.033	0.043				
03/05/93	Iron, dissolved		8.004717			< 0.03	< 0.03		< 0.03	< 0.03	0.035	< 0.03				
09/21/93	Iron, dissolved		8.004717			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	2.46	0.05				
03/23/94	Iron, dissolved		8.004717			< 0.03	<.03	0.058	< 0.03	< 0.03	9.65	0.084				
09/16/94	Iron, dissolved		8.004717			< 0.03	<.03	NT	< 0.03	0.05	2.9	0.55				
03/16/95	Iron, dissolved		8.004717			< 0.03	<.03	NT	< 0.03	0.038	1.24	0.47				
09/13/95	Iron, dissolved		8.004717			< 0.03	<.03	NT	< 0.03	< 0.03	8.5	0.317				
03/28/96	Iron, dissolved		8.004717	1.8		< 0.03	< 0.03	NT	< 0.03	< 0.03	5.77	0.386	0.067			
06/20/96	Iron, dissolved		8.004717	4.94		NT	NT	NT	NT	NT	NT	NT	0.927			
09/13/96	Iron, dissolved		8.004717	0.793		< 0.03	< 0.03	Dry	< 0.03	0.134	2.27	1.3	1.02			
03/19/97	Iron, dissolved		8.004717	3.87		0.032	< 0.03	< 0.03	0.072	< 0.03	7.18	< 0.03	0.484			
06/18/97	Iron, dissolved		8.004717	4.07		< 0.03	NT	NT	NT	NT	NT	NT	0.523			
08/30/97	Iron, dissolved	-	8.004717	4.22		< 0.03	< 0.03	DRY	< 0.03	0.076	5.02	1.93	5.05			
03/10/98	Iron, dissolved		8.004717	3.78		< 0.03	< 0.03	DRY	0.033	0.717	5.83	1.52	0.5			
09/21/98	Iron, dissolved	-	8.004717	6.59		< 0.03	< 0.03	DRY	< 0.03	0.166	2.2	3.09	0.415			
03/18/99	Iron, dissolved		8.004717	3.73		0.044	< 0.03	DRY	< 0.03	0.131	5.64	4.78	0.162			
09/21/99	Iron, dissolved		8.004717	7.01		< 0.03	< 0.03	DRY	< 0.03	0.076	3.99	5.53	0.337			
3/21/2000	Iron, dissolved		8.004717	NT		< 0.03	< 0.03	DRY	< 0.03	0.371	5.69	4.15	NT			
6/28/2000	Iron, dissolved		8.004717	NT	< 0.03	NT	NT	DRY	NT	NT	NT	NT	NT	0.033	< 0.03	<0.
9/28/2000	Iron, dissolved		8.004717	0.067	< 0.03	< 0.03	< 0.03	DRY	< 0.03	< 0.03	0.303	3.3	DRY	< 0.03	< 0.03	<0.
2/27/2000	Iron, dissolved		8.004717	NT	< 0.03	NT	NT	Dry	NT	NT	NT	NT	NT	0.109	< 0.03	<0
3/28/2001	Iron, dissolved		8.004717	< 0.03	< 0.03	0.039	< 0.03	< 0.03	< 0.03	< 0.03	2.7	< 0.03	0.108	< 0.03	< 0.03	<0.
9/02/2001	Iron, dissolved		8.004717	6.85	< 0.03	< 0.03	< 0.03	NT	0.672	< 0.03	4.47	6.97	0.168	1.15	< 0.03	0.0
3/19/2002	Iron, dissolved		8.004717	0.713	< 0.03	< 0.03	< 0.03	Dry	0.41	< 0.03	4.46	0.654	< 0.03	0.04	< 0.03	<0
9/19/2002	Iron, dissolved		8.004717	0.496	< 0.03	< 0.03	< 0.03	Dry	1.46	< 0.03	4.12	5.65	< 0.03	0.087	< 0.03	<0
3/14/2003	Iron, dissolved		8.004717	3.64	0.035	< 0.03	< 0.03	Dry	< 0.03	< 0.03	4.95	4.67	< 0.03	0.041	< 0.03	<0.
9/29/2003	Iron, dissolved		8.004717	1.02	< 0.030	< 0.03	< 0.030	Dry	3.44	< 0.030	0.556	5.63	0.078	0.041	< 0.030	<0.0
3/08/2004	Iron, dissolved		8.004717	5.52	< 0.030	< 0.03	№ 0.033	< 0.03	0.463	0.121	7.99	0.231	0.109	3.46	< 0.030	<0.
09/27/2004	Iron, dissolved		8.004717	5.25	< 0.030	< 0.03	< 0.030	< 0.03	3.51	0.034	2.56	0.39	< 0.030	0.136	< 0.030	<0.0

			MEAN +				WATER TAE	BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	вотн	D.G.W	D.G.W	D.G.W
ATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
	mg/L									N 2018141						
04/23/91	Lead, dissolved	0.015	0.005			< 0.005	< 0.005	0.012		< 0.005		< 0.005				
10/15/91	Lead, dissolved	0.015	0.005			< 0.005	0.009		0.006	0.007		0.01				
01/23/92	Lead, dissolved	0.015	0.005			< 0.005	< 0.005		< 0.005	< 0.005	< 0.005	< 0.005				
03/23/92	Lead, dissolved	0.015	0.005			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005				
09/30/92	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005			NT	NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005	< 0.005		NT	NT	NT	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	< 0.005		NT	NT	NT	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	< 0.005		NT	NT	Dry	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	< 0.005		< 0.005	NT	NT	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
		0.015	0.005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Lead, dissolved	2000	0.005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015				NT	NT	DRY	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	NT	-0.005					NT	NT	NT	NT	< 0.005	< 0.005	< 0.0
	Lead, dissolved	0.015	0.005	NT	< 0.005	NT	NT	DRY	NT						< 0.005	<0.0
	Lead, dissolved	0.015	0.005	NT	NT	< 0.005	NT	DRY	NT	NT	NT	NT	DRY	< 0.005	< 0.005	<0.0
	Lead, dissolved	0.015	0.005	NT	< 0.005	NT	NT	Dry	NT	NT	NT	NT	NT	<0.005		
	Lead, dissolved	0.015	0.005	NT	< 0.005	< 0.005	NT	NT	NT	NT	NT	NT	NT	< 0.005	<0.005	<0.0
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Lead, dissolved	0.015	0.005	NT	NT	< 0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
/14/2003	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	N
/29/2003	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
/08/2004	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
/27/2004	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	0.009	0.012	0.006	0.007	ERR	0.01	ERR	ERR	ERR	
	Standard Deviation (STD)			ERR	ERR			0					ERR	ERR	ERR	
	Mean + 2 STD			ERR	ERR			0.012					ERR	ERR	ERR	
							0.500	2.3.2								
																1
					16	ad, Diss	havlos									
						Water Table										

			MEAN +				WATER TAE	SLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.V
TE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
1100101	mg/L		100 0750			400		1. 1. 1. 1.	45.0	05.0						
	Magnesium, dissolved		109.2752			102	53.2	75.1	45.2	35.6		29.5				
	Magnesium, dissolved		109.2752			85.9	53.4		46.1	31.4		31.7				
	Magnesium, dissolved		109.2752			85.2	49.8		43.1	56.4	58	68				
	Magnesium, dissolved		109.2752			111	44.1	76.6	98.9	53.9	65.7	65.7				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752			NT	NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		109.2752	107		NT	NT	NT	NT	NT	NT	NT	51.8			
	Magnesium, dissolved		109.2752	94.3		NT	NT	NT	NT	NT	NT	NT	48.6			
	Magnesium, dissolved		109.2752	94.7		NT	NT	Dry	NT	NT	NT	NT	58.1			
	Magnesium, dissolved		109.2752	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	100		55.7	NT	NT	NT	NT	NT	NT	45			
	Magnesium, dissolved		109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Magnesium, dissolved		109.2752	NT	63.7	NT	NT	DRY	NT	NT	NT	NT	NT	68.7	51.1	96.
	Magnesium, dissolved		109.2752	NT	NT	44.6	NT	DRY	NT	NT	NT	NT	DRY	64.9	44.9	90.9
	Magnesium, dissolved		109.2752	NT	63.7	NT	NT	Dry	NT	NT	NT	NT	NT	76.4	51.9	94.7
	Magnesium, dissolved		109.2752	NT	58.1	32.9	NT	NT	NT	NT	NT	NT	NT	70.2	58.4	58.4
	Magnesium, dissolved		109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved		109.2752	NT	NT	55.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
9/2002	Magnesium, dissolved		109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved		109.2752	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Magnesium, dissolved		109.2752	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
NOOCIO	Magnesium, dissolved		109.2752	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
0/2004							NT	NT	NT	NT	NT					

			MEAN +					BLE WELLS								
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43_
	mg/L								 -							
04/23/91	Mercury, dissolved	0.002	0.0005			<0.001	<0.001	<0.001	<0.001	<0.001		<0.001				
10/15/91	Mercury, dissolved	0.002	0.0005			<0.0005	<0.0005		<0.0005	<0.0005		<0.0005				
	Mercury, dissolved	0.002	0.0005			< 0.0005	<0.0005		<0.0005	<0.0005	<0.0005	<0.0005				
03/23/92	Mercury, dissolved	0.002	0.0005			< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	< 0.0005				
09/30/92	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
03/05/93	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
09/21/93	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
03/23/94	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
09/16/94	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
03/16/95	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
09/13/95	Mercury, dissolved	0.002	0.0005			NT	NT	NT	NT	NT	NT	NT				
03/28/96	Mercury, dissolved	0.002	0.0005	<0.0005		NT	NT	NT	NT	NT	NT	NT	<0.0005			
06/20/96	Mercury, dissolved	0.002	0.0005	<0.0005		NT	NT	NT	NT	NT	NT	NT	<0.0005			
09/13/96	Mercury, dissolved	0.002	0.0005	<0.0005		NT	NT	Dry	NT	NT	NT	NT	<0.0005			
03/19/97	Mercury, dissolved	0.002	0.0005	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97	Mercury, dissolved	0.002	0.0005	<0.0005		< 0.0005	NT	NT	NT	NT	NT	NT	<0.0005			
08/30/97	Mercury, dissolved	0.002	0.0005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/10/98	Mercury, dissolved	0.002	0.0005	NT		NT	NT	DRY	NT	NT	NŤ	NT	NT			
09/21/98	Mercury, dissolved	0.002	0.0005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/18/99	Mercury, dissolved	0.002	0.0005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99	Mercury, dissolved	0.002	0.0005	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/28/2000	Mercury, dissolved	0.002	0.0005	NT		NT	NT	DRY	NT	NT	NT	NT	NT		-	
06/28/2000	Mercury, dissolved	0.002	0.0005	NT	<0.0005	NT	NT	DRY	NT	NT	NT	NT	NT	<0.0005	<0.0005	<0.0005
09/28/2000	Mercury, dissolved	0.002	0.0005	NT	NT	<0.0005	NT	DRY	NT	NT	NT	NT	DRY	<0.0005	<0.0005	<0.0005
12/27/2000	Mercury, dissolved	0.002	0.0005	NT	<0.0005	NT	NT	Dry	NT	NT	NT	NT	NT	<0.0005	<0.0005	<0.0005
03/28/2001	Mercury, dissolved	0.002	0.0005	NT	<0.0005	<0.0005	NT	NT	NT	NT	NT	NT	NT	<0.0005	<0.0005	<0.0005
09/02/2001	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Mercury, dissolved	0.002	0.0005	NT	NT	< 0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Mercury, dissolved	0.002	0.0005	NT	NT	NŤ	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	R ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	R ERR	ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +			1	WATER TAE	BLE WELLS								
	212115752	ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	BOTH	ВОТН	BOTH	D.G.W	D.G.W	D.G.V
ATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
4/00/04	mg/L		4.4			<0.5	<0.5	<0.5	<0.5	< 0.5		<0.5				
	Nitrogen, Ammonia		1.4 1.4			<0.5	<0.5	<0.5	<0.5	<0.5		<0.5				
	Nitrogen, Ammonia Nitrogen, Ammonia		1.4			<1.0	<1.0		<1.0	<1.0	<1.0	<1.0				
	Nitrogen, Ammonia		1.4			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
	Nitrogen, Ammonia		1.4			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
	Nitrogen, Ammonia		1.4			<1	<1		<1	<1	1.7	<1				
	Nitrogen, Ammonia		1.4			<1	<1	<1	<1	<1	1.7	<1				
	Nitrogen, Ammonia		1.4			<1	<1	<1	<1	<1	1.8	1.1				
						<1	<1	NT	<1	<1	1.8	1.3				
	Nitrogen, Ammonia		1.4 1.4			<1	<1	NT	<1	<1	1.6	1.3				
	Nitrogen, Ammonia						<1		<1	<1	1.5	1.2				
	Nitrogen, Ammonia		1.4 1.4	1.4		<1 <1	<1	NT NT	<1	<1	1.5	1.8	<1			
	Nitrogen, Ammonia Nitrogen, Ammonia			<1.4		NT	NT	NT	NT	NT	NT	NT	<1			
		-	1.4 1.4	<1		<1	<1	Dry	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia Nitrogen, Ammonia		1.4	<1		<1	<1	<1	<1	<1	1.5	<1	<1			
	Nitrogen, Ammonia Nitrogen, Ammonia			<1		<1	NT	NT	NT	NT	NT	NT	<1			
			1.4	<1		<1	<1	DRY	<1	<1	1.4	1.4	<1			
	Nitrogen, Ammonia		1.4	<1		<1	<1	DRY	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia		1.4 1.4	<1		<1	<1	DRY	<1	<1	1.6	1.4	<1			
	Nitrogen, Ammonia		1.4	<1		<1	<1	DRY	<1	<1	1.4	<1	<1			
	Nitrogen, Ammonia		1.4	<1		<1	<1	DRY	<1	<1	1.5	<1	<1			
	Nitrogen, Ammonia			NT		<1	<1	DRY	<1	<1	1.6	<1	NT			
	Nitrogen, Ammonia		1.4	NT	-4	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
	Nitrogen, Ammonia			<1	<1 <1	<1	<1	DRY	<1	<1	1.35	<1	DRY	<1	<1	<1
	Nitrogen, Ammonia		1.4	NT	<1	NT	NT		NT	NT	NT	NT	NT	<1	<1	<1
	Nitrogen, Ammonia			<1	<1	<1	<1	Dry <1	<1	<1	1.8	<1	<1	<1	<1	<1
	Nitrogen, Ammonia		1.4	<1	<1	<1	<1	NT	<1	<1	1.6	<1	<1	<1	<1	2.4
	Nitrogen, Ammonia		1.4		100								<1	<1	<1	
	Nitrogen, Ammonia		1.4	<1 <1	<1 <1	<1 <1	<1	Dry	<1 <1	<1	2.2	<1 <1	<1	<1	<1	2.2
	Nitrogen, Ammonia		1.4 1.4	<1	1.2	<1	<1 <1	Dry	<1	<1	1.4	<1	<1	<1	<1	5.5
	Nitrogen, Ammonia			<1.0	<1.0	<1.0	<1.0	Dry	<1.0	<1.0	1.6	1.2	<1.0	<1	<1.0	2.6
	Nitrogen, Ammonia		1.4			<1.0	<1.0	Ory <1.0	<1.0	<1.0	2	<1.0	<1.0	<1	<1.0	4.6
	Nitrogen, Ammonia Nitrogen, Ammonia		1.4	<1.0 <1.0	<1.0 <1.0	<1	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	<1.0	3.3
21/2004	Tha ogor, Armitolia		1.4	-1.0	-1.0	3.1	31.0	-1.0	-1.0	-1.0	Acres in			31.0	-1.0	0.0
	Mean			1.4	1.2	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	1.645652 0.230742	1.290909 0.219315	ERR ERR	ERR ERR	ERR ERR	3.38 1.13
	Standard Deviation (STD)			0	1.2							1.72954	ERR	ERR	ERR	5.65
	Mean + 2 STD			1.4	1.2	ERR	ERR	ERR	ERR	ERR	2.107137	1.72954	EKK	EKK	EKK	5.65

			MEAN +	Teller			WATER TA	BLE WELLS								
DATE	PARAMETER	ACTION LEVEL	2 STD WT	U.G.W MW-37	D.G.W MW 6	D.G.W MW 28	D.G.W MW 23	D.G.W MW 24	D.G.W MW 31	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.G.W MW 39	D.G.W MW 40	D.G.W MW 43
													7			
04/23/91 pH			8.166256			6.99	7.45	7.25	7.48	7.55	-	7.01				
10/15/91 pH			8.166256			7.71	7.42		7.42	7.60		7.03				
01/23/92 pH			8.166256			7.41	7.52		7.41	7.27	7.26	7.31				
03/23/92 pH			8.166256			7.32	7.33	7.30	7.30	7.39	7.37	7.32				
09/30/92 pH			8.166256				7.28		7.37	7.31	7.3	7.13				
03/05/93 pH			8.166256			6.72	7.43		7.54	7.41	7.42	7.34				
09/21/93 pH			8.166256			6.73	7.19	7.09	7.08	6.85	7.29	7.12				
03/23/94 pH			8.166256			7.05	7.4	7.45	7.29	7.16	7.18	7.4				
09/16/94 pH			8.166256			6.57				6.46	7.22	6.99				
03/16/95 pH			8.166256			6.9	7.4	DRY	7.8	7.7	7.6	7.7				
09/13/95 pH			8.166256			7	7.6	DRY	7.6	7.6	7.6	7.6				
03/28/96 pH			8.166256	7.9		8.4	8.1	DRY	8.1	7.9	7.9	8	8			
06/20/96 pH			8.166256	6.7		NT	NT	NT	NT	NT	NT	NT	7.5			
09/13/96 pH			8.166256	7.8		8	7.7	Dry	7.7	7.7	7.7	8	8.1			
03/19/97 pH			8.166256	7.7		7.7	7.6	7.7	7.8	7.5	7.5	7.7	8.1			
06/18/97 pH			8.166256	7.5		7.8	NT	NT	NT	NT	NT	NT	8.2			
08/30/97 pH			8.166256	8.1		8	7.6	DRY	7.6	7.8	7.9	8	8			
03/10/98 pH			8.166256	7.8		8.1	7.6	DRY	7.5	6.4	5.8	5.8	5.4			
09/21/98 pH			8.166256	7		7	7.1	DRY	7.1	6.2	5.8	7.4	7.4			
03/18/99 pH			8.166256	7.3		7.7	7	DRY	7.2	7.3	7.4	7.7	6.9			
09/21/99 pH			8.166256	7		7	7.1	DRY	7.1	6.2	5.8	7.4	7.4			
03/21/2000 pH			8.166256	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000 pH			8.166256	NT	7.1	NT	NT	DRY	NT	NT	NT	NT	NT	5.9	5.8	
09/28/2000 pH			8.166256	7	6.8	7.4	7	DRY	6.9	7.2	7.3	7.2	NT	7.1	7.1	
12/27/2000 pH			8.166256	NT	8.2	NT	NT	Dry	NT	NT	NT	NT	NT	8	8.1	7.9
03/28/2001 pH			8.166256	7.3	6.8	7.8	7.8	7.7	7.9	7.5	7.4	7.5	7.5	7.2	7.7	8.1
09/02/2001 pH			8.166256	7.7	6.9	NT	7.2	NT	7.4	7.7	7.8	7.3	7.3	7.1	7.9	7.7
03/19/2002 pH			8.166256	6.8	6.5	7.4	NT	Dry	NT	7	7.2	7	7.1	6.9	7.5	6.8
09/19/2002 pH			8.166256	6.7	6.6	6.8	6.7	Dry	6.5	7.5	7	6.7	6.9	6.7	6.9	6.7
03/14/2003 pH			8.166256	7.5	6.6	6.7	8.1	Dry	7.4	7.1	7.4	7.3	7.1	8	8.1	7.8
09/29/2003 pH			8.166256	7.5	6.9	7.4	7.2	Dry	7.3	7.4	7.8	7.4	7.5	7.2	7.5	6.8
03/08/2004 pH			8.166256	7.1	7.1	7.5	7.4	7.1	7.4	7.6	7.4	7.4	7.4	7.1	7.5	8.2
09/27/2004 pH			8.166256	7.1	6.7	7.3	7.1	7.1	7	7	7.1	7.2	7.2	7	7.6	6.8

04/23/91 Pher 10/15/91 Pher 01/23/92 Pher 03/23/92 Pher 09/30/92 Pher	nols	ACTION LEVEL	MEAN + 2 STD WT	U.G.W MW-37	D.G.W MW 6	D.G.W	WATER TAE D.G.W	D.G.W	D.G.W	вотн	вотн		вотн	D.G.W	D.G.W	D.G.W
04/23/91 Pher 10/15/91 Pher 01/23/92 Pher 03/23/92 Pher 09/30/92 Pher	mg/L nols nols	LEVEL	WT			D.G. VV						вотн	ROTH			11(2)
04/23/91 Pher 10/15/91 Pher 01/23/92 Pher 03/23/92 Pher 09/30/92 Pher	mg/L nols nols		,	INIAA-01	MWW B	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
10/15/91 Phei 01/23/92 Phei 03/23/92 Phei 09/30/92 Phei	nols nols				IVIVY	10100 20	10100 23	10100 2-7	14144 01	17177 20	10111 00	10100 34	WWWSS	10100 33	10100 70	10101 45
10/15/91 Phei 01/23/92 Phei 03/23/92 Phei 09/30/92 Phei	nols		0.1			<0.1	<0.1	<0.1	<0.1	<0.1		<0.1				
01/23/92 Pher 03/23/92 Pher 09/30/92 Pher			0.1			<0.1	<0.1		<0.1	<0.1		<0.1				
03/23/92 Phei 09/30/92 Phei	1015		0.1			<0.1	<0.1		<0.1	<0.1	<0.1	<0.1				
09/30/92 Phei	oole		0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
			0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/05/93 Phei			0.1			NT	NT	NT	NT	NT	NT	NT				
09/21/93 Phe			0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/23/94 Phei			0.1			NT	NT	NT	NT	NT	NT	NT				
09/16/94 Phei			0.1			<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1				
09/16/94 Phei 03/16/95 Phei			0.1			<0.1	<0.1 <0.1	NT	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1				
03/16/95 Phei			0.1			NT	NT	NT	NT	NT	NT	NT				
03/28/96 Phei				NT		NT	NT	NT	NT	NT	NT	NT	NT			
03/28/96 Phei			0.1 0.1	NT NT		NT	NT	NT NT	NT	NT	NT	NT	NT			
09/13/96 Phei			0.1	<0.1		<0.1	<0.1	Dry	<0.1	<0.1	<0.1	<0.1	<0.1			
03/19/97 Phei			0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
06/18/97 Phei			0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
08/30/97 Phe			0.1	<0.1		<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	<0.1			
03/10/98 Phe			0.1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
09/21/98 Phe			0.1	<0.1		<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	<0.1			
03/18/99 Phe			0.1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
09/21/99 Phe			0.1	<0.1		<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	<0.1			
03/21/2000 Phe			0.1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000 Phe	=		0.1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/28/2000 Phe			0.1	<0.1	<0.1	<0.1	<0.1	DRY	<0.1	<0.1	<0.1	<0.1	DRY	<0.1	<0.1	<0.1
12/27/2000 Phe			0.1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
03/28/2001 Phe			0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/02/2001 Phe			0.1	<0.1	<0.1	<0.1	<0.1	NT	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
03/19/2002 Phe			0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002 Phe			0.1	<0.1	<0.1	<0.1	<0.1	Dry	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
03/14/2003 Phe			0.1	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003 Phe			0.1	<0.100	<0.100	<0.100	<0.100	Dry	<0.100	<0.100	<0.100	<0.100	<0.100	NT	<0.100	<0.100
03/08/2004 Phe	-		0.1	NT	V0.100 NT	\0.100 NT	\0.100 NT	NT	\0.100 NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004 Phe			0.1	<0.100	<0.100	<0.100	<0.100	NT	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
09/2//2004 Pile	iois		0.1	~ 0.100	<0.100	<0.100	<0.100	IV I	<0.100	~0.100	~0.100	<0.100	~0.100	<0.100	~0.100	~0.100
Mea Star	n dard Deviation (STD)			ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERI ERI
	n + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER

			MEAN +			-	VATER TAB									
_		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	BOTH	вотн	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 4
04/22/01 To	emperature, celsius		22.16435			16.9	12.4	11.2	11.1	15.1		12.4				
	emperature, celsius		22.16435			12.4	12.1		10.7	14.6		16.2				
	emperature, celsius		22.16435			6.1	8.1		9.5	8.3	8.3	6.2				
	emperature, celsius		22.16435			9.5	11.8	9.2	11.8	7.2	7.3	6.5				
	emperature, celsius		22.16435				10.7		11.6	10.7	10.7	10.1				
	emperature, celsius		22.16435			5.2	9.7		9.1	6.9	6.9	6.1				
	emperature, celsius		22.16435			17.5	15.9	13	11.5	14.6	14.7	14.8				
	emperature, celsius		22.16435			10.2	10.7	10	12.1	9.4	11.7	12				
	emperature, celsius		22.16435			21.3				19.9	18.5	2.11				
	emperature, celsius		22.16435			5	8	DRY	9	7	7	6				
	emperature, celsius		22.16435			4.72	3.89	DRY	3.8	4.63	4.24	4.66				
	emperature, celsius		22.16435	9		6	10	DRY	11	7	7	7	6			
	emperature, celsius		22.16435	13		NT	NT	NT	NT	NT	NT	NT	13			
	emperature, celsius		22.16435	17		18	15	Dry	14	15	16	16	16			
	emperature, celsius		22.16435	9		6	9	9	12	6	7	6	6			
	emperature, celsius		22.16435	14		15	NT	NT	NT	NT	NT	NT	12			
	emperature, celsius		22.16435	20		20	16	DRY	16	19	20	21	17			
	emperature, celsius		22.16435	8		6	8	DRY	10	10	9	9	9			
	emperature, celsius		22.16435	16		18	12	DRY	12	17	18	17	15			
	emperature, celsius		22.16435	8		5	10	DRY	10	9	8	9	9			
	emperature, celsius		22.16435	16		18	12	DRY	12	17	18	17	15			
	emperature, celsius		22.16435	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	emperature, celsius		22.16435	NT	19	NT	NT	DRY	NT	NT	NT	NT	NT	14	NT	16
	emperature, celsius		22.16435	19	20	17	14	DRY	14	17	16	17	NT	16	17	15
	emperature, celsius		22.16435	NT	13	NT	NT	Dry	NT	NT	NT	NT	NT	13	11	13
	emperature, celsius		22.16435	8	10	6	10	9	12	9	9	6	7	11	8	12
	emperature, celsius		22.16435	17	NT	NT	15	NT	14	14	13	17	15	15	17	15
	emperature, celsius		22.16435	10	8	7	15	Dry	15	10	11	10	10	10	8	12
	emperature, celsius		22.16435	19	18	20	15	Dry	14	NT	NT	19	16	18	17	15
	emperature, celsius		22.16435	12	6	7	13	Dry	14	9	10	10	10	13	10	14
	emperature, celsius		22.16435	17	18	15	14	Dry	14	15	14	19	17	15	16	16
	emperature, celsius		22.16435	11	7	6	11	10	12	9	12	7	5	12	8	13
				7. 7.				10	15	15	15	18	16	18	18	15
	emperature, celsius		22.16435	19	18	21	16					18	16	18		18
-0.0	Mean Standard Deviation (STD)			13.78947 4.187437	13.7 5.235456	11.84519 5.999387	11.78852 2.949354	10.175 1.266639	11.8963 2.438652	11.71593 4.276846	11.6936 4.321947	11.5025 5.304	11.88889 4.067334	14.09091 2.502891	13 4.123106	14
	Mean + 2 STD			22.16435	24.17091	23.84396	17.68723	12.70828	16.7736	20.26962	20.33749	22.1105	20.02356	19.09669	21.24621	16.9
IV	nean + 2 STD			22.10433	24.17031	23.04330	17.00725	12.70020	10.7700	20.20002	20.007 10	22.1100	20.02000			

PARAMETER mg/L l Organic Halogens	ACTION LEVEL	2 STD WT 0.01 0.01 0.01	U.G.W MW-37	D.G.W MW 6	D.G.W MW 28 0.06 <0.01	D.G.W MW 23 <0.01 <0.01	D.G.W MW 24 <0.01	D.G.W MW 31	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.G.W MW 39	D.G.W MW 40	D.G.
mg/L I Organic Halogens I Organic Halogens I Organic Halogens I Organic Halogens I Organic Halogens	=	0.01 0.01 0.01	MW-37	MW 6	0.06	<0.01	- 14					MW35	MW 39	MW 40	MW 4
I Organic Halogens I Organic Halogens I Organic Halogens I Organic Halogens I Organic Halogens	-	0.01 0.01					<0.01	0.016	0.033						
I Organic Halogens I Organic Halogens I Organic Halogens I Organic Halogens	-	0.01 0.01					< 0.01	0.016	0.033						
I Organic Halogens I Organic Halogens I Organic Halogens		0.01			< 0.01	-0.01					0.05				
l Organic Halogens l Organic Halogens								< 0.01	< 0.01		< 0.01				
Organic Halogens		0 04			0.03	0.02		< 0.01	< 0.01	< 0.01	< 0.01				
		0.01			0.04	< 0.01	< 0.01	< 0.01	0.92	0.99	0.01				
O		0.01			-	< 0.01	0.01	0.01	0.02	< 0.01	0.01				
Organic Halogens	-	0.01			NT	NT	NT	NT	NT	NT	NT				
Organic Halogens		0.01			0.05	0.01	0.02	0.02	0.02	0.05	0.02				
Organic Halogens		0.01			NT	NT	NT	NT	NT	NT	NT				
l Organic Halogens		0.01				< 0.01				Control of the later of the lat					
Organic Halogens		0.01													
l Organic Halogens		0.01			NT		NT								
l Organic Halogens		0.01			NT	NT	NT			1000000					
l Organic Halogens		0.01	NT		NT	NT	NT	NT			NT				
l Organic Halogens		0.01	0.01		0.04	0.01	Dry	0.02			0.01				
l Organic Halogens		0.01	NT		NT	NT	NT	NT	NT						
l Organic Halogens		0.01	NT		NT	NT	NT	NT	NT	NT	NT				
l Organic Halogens		0.01	< 0.01		0.02	0.01	DRY	0.02	< 0.01	< 0.01	< 0.01				
l Organic Halogens		0.01	NT		NT	NT	NT	NT	NT	NT	NT	NT			
l Organic Halogens		0.01	< 0.01		0.03	0.01	DRY	0.06	0.02	0.02	< 0.01	0.03			
l Organic Halogens		0.01	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
l Organic Halogens		0.01	< 0.01		0.03	0.03	DRY	0.05	0.02	0.02	0.01	0.02			
l Organic Halogens		0.01	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
l Organic Halogens		0.01	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	N
l Organic Halogens		0.01	< 0.01	0.09	0.03	0.01	DRY	0.04	0.02	0.02	0.02	DRY	0.02	< 0.01	0.2
l Organic Halogens		0.01	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	N
l Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
l Organic Halogens		0.01	< 0.01	0.085	0.022	0.03	NT	0.074	0.065	0.021	0.03	0.028	0.017	< 0.01	0.0
l Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
l Organic Halogens		0.01	< 0.01	0.099	0.033	0.04	Dry	0.043	0.019	0.02	0.021	0.034	< 0.01	0.015	0.0
		0.01	NT	NT	NT	NT	Dry	NT	NT	NT	NT	NT	NT	NT	N
l Organic Halogens		0.01	< 0.010	0.057	< 0.010	0.025	Dry	0.075	< 0.010	< 0.010	0.012	< 0.010	NT	< 0.010	<0.
l Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
		0.01	< 0.010	0.074	0.03	0.047	NT	0.101	0.034	0.034	0.012	0.029	< 0.010	0.01	0.0
	Organic Halogens	Organic Halogens	Organic Halogens 0.01 Organic Halogens	Organic Halogens 0.01 Organic Halogens 0.01 Organic Halogens 0.01 Organic Halogens 0.01 NT Organic Halog	Organic Halogens 0.01 Organic Halogens 0.01 Organic Halogens 0.01 Organic Halogens 0.01 NT Organic Halogens 0.01 NT NT Organic Halogens	Organic Halogens 0.01 <0.05	Organic Halogens 0.01 <0.05	Organic Halogens 0.01 <0.05	Organic Halogens — 0.01 <0.05	Organic Halogens 0.01 <0.05	Organic Halogens 0.01 <0.05 <0.01 NT 0.015 0.024 0.024 Organic Halogens 0.01 0.06 <0.01	Organic Halogens 0.01 <0.05	Organic Halogens - 0.01 <0.05 <0.01 NT 0.015 0.024 <0.024 <0.01 Organic Halogens 0.01 0.06 <0.01	Organic Halogens - 0.01 <0.05 <0.01 NT 0.015 0.024 0.024 <0.01 <0.01 Organic Halogens - 0.01 0.06 <0.01 NT NT	Organic Halogens 0.01 <0.05 <0.01 NT 0.015 0.024 <0.024 <0.01 Occurate Halogens 0.01 0.06 <0.01 NT NT

494	T		MEAN +				WATER TAB	RIE WEILS				_				
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	вотн	BOTH	вотн	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
DATE	ug/L	LEVEL		10100-57	IVIVV	10100 20	10100 23	10100 27	11111 01	10111 20			WWWJJ	10100 00	10100 40	10100 40
04/23/01	Trichloroethene *	5	1			<1	<1	<1	<1	<1		<1				
	Trichloroethene *	5	1			<1	<1		<1	<1		<1				
	Trichloroethene *	5	,			<1	<1		<1	<1	<1	<1				
	Trichloroethene *	5	1			<1	<1	<1	<1	<1	<1	<1				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
•	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	· i			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
4-	Trichloroethene *	5	1			NT	NT	NT	NT	NT	NT	NT				
	Trichloroethene *	5	i			NT	NT	NT	NT	NT	NT	NT				
• • ,	Trichloroethene *	5	i 1			NT	NT	NT	NT	NT	NT	NT				
00,	Trichloroethene *	5	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	<1		NT	NT	NT	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	<1		NT	NT	Drv	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	<1		<1	NT	NT	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
03/21/2000	Trichloroethene *	5	1	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
06/28/2000	Trichloroethene *	5	1	NT	<1	NT	NT	DRY	NT	NT	NT	NT	NT	<1	<1	<1
09/28/2000	Trichloroethene *	5	1	NT	NT	<1	NT	DRY	NT	NT	NT	NT	DRY	<1	<1	<1
12/27/2000	Trichloroethene *	5	1	NT	<1	NT	NT	Dry	NT	NT	NT	NT	NT	<1	<1	<1
03/28/2001	Trichloroethene *	5	1	NT	<1	<1	NT	NŤ	NT	NT	NT	NT	NT	<1	<1	<1
09/02/2001	Trichloroethene *	5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	Trichloroethene *	5	1	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Trichloroethene *	5	1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Trichloroethene *	5	1	NT	NT	NT	NT	DRY	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Trichloroethene *	5	. 1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Moon			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF
	Mean Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ËRR	ERR	ERR	ERR	
				ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	
	Mean + 2 STD			EKK	ERR	EKK	EKK	EKK	EKK	EKK	EKK	EKK	EKK	EKK	EKK	EIKI

			MEAN +	100 100		1	WATER TAE	BLE WELLS						LX		
		ACTION	2 STD	U.G.W	D.G.W	D.G.W	D.G.W	D.G.W	D.G.W	вотн	BOTH	BOTH	BOTH	D.G.W	D.G.W	D.G.W
DATE	PARAMETER	LEVEL	WT	MW-37	MW 6	MW 28	MW 23	MW 24	MW 31	MW 25	MW 33	MW 34	MW35	MW 39	MW 40	MW 43
	mg/L									-0.00						
	Zinc, dissolved	2	0.0685			< 0.03	< 0.03	< 0.03	< 0.03	< 0.03		< 0.03				
	Zinc, dissolved	2	0.0685			<0.03	< 0.03		< 0.03	< 0.03		< 0.03				
	Zinc, dissolved	2	0.0685			< 0.03	< 0.03	-0.00	< 0.03	< 0.03	< 0.03	< 0.03				
STATE OF THE PARTY	Zinc, dissolved	2	0.0685			< 0.03	< 0.03	< 0.03	< 0.03	<0.03	<0.03	< 0.03				
	Zinc, dissolved	2	0.0685			NT	NT	NT	NT	NT NT	NT	NT				
	Zinc, dissolved	2	0.0685			NT	NT	NT	NT	NT	NT	NT				
	Zinc, dissolved	2	0.0685			NT	NT	NT		NT	NT	NT NT				
	Zinc, dissolved	2	0.0685			NT	NT	NT	NT NT	NT	NT	NT				
Contract of the Contract of th	Zinc, dissolved	2	0.0685			NT NT	NT NT	NT NT	NT	NT	NT	NT				
	Zinc, dissolved	2				0.7.7.7.		100	NT	NT	NT	NT				
	Zinc, dissolved	2	0.0685	< 0.03		NT NT	NT	NT NT	NT	NT	NT	NT	< 0.03			
	Zinc, dissolved	2	0.0685 0.0685	0.043		NT	NT	NT	NT	NT	NT	NT	0.047			
	3 Zinc, dissolved 3 Zinc, dissolved	2	0.0685	0.043		NT	NT	Dry	NT	NT	NT	NT	0.047			
	Zinc, dissolved Zinc, dissolved	2	0.0685	NT		NT	NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved Zinc, dissolved	2	0.0685	< 0.03		0.032	NT	NT	NT	NT	NT	NT	< 0.03			
	Zinc, dissolved Zinc, dissolved	2	0.0685	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	3 Zinc, dissolved	2	0.0685	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	3 Zinc, dissolved 3 Zinc, dissolved	2	0.0685	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.0685	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	2 Zinc, dissolved	2	0.0685	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.0685	NT		NT	NT	DRY	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.0685	NT	< 0.03	NT	NT	DRY	NT	NT	NT	NT	NT	< 0.03	0.031	< 0.03
	Zinc, dissolved	2	0.0685	NT	NT	0.053	NT	DRY	NT	NT	NT	NT	DRY	< 0.03	< 0.03	< 0.03
	Zinc, dissolved	2	0.0685	NT	0.03	NT	NT	Dry	NT	NT	NT	NT	NT	0.033	0.049	0.031
	Zinc, dissolved	2	0.0685	NT	< 0.03	< 0.03	NT	NT	NT	NT	NT	NT	NT	0.047	< 0.03	< 0.03
	Zinc, dissolved	2	0.0685	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Zinc, dissolved	2	0.0685	NT	NT	< 0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	San Albanian and the san A								NT	NT	NT	NT	NT	NT	NT	NT
	The state of the s								NT	NT	NT	NT	NT	NT	NT	NT
									NT	NT	NT	NT	NT	NT	NT	NT
				NT	NT		NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
		2	0.0685	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003 09/29/2003 03/08/2004	2 Zinc, dissolved 3 Zinc, dissolved 3 Zinc, dissolved 4 Zinc, dissolved 4 Zinc, dissolved		2 2 2 2 2 2	2 0.0685 2 0.0685 2 0.0685	2 0.0685 NT 2 0.0685 NT 2 0.0685 NT	2 0.0685 NT NT 2 0.0685 NT NT 2 0.0685 NT NT	2 0.0685 NT NT NT 2 0.0685 NT NT NT 2 0.0685 NT NT NT	2 0.0685 NT NT NT NT NT 2 0.0685 NT NT NT NT NT 2 0.0685 NT NT NT NT NT	2 0.0685 NT NT NT NT DRY 2 0.0685 NT NT NT NT DRY 2 0.0685 NT NT NT NT NT	2 0.0685 NT NT NT NT DRY NT 2 0.0685 NT NT NT NT DRY NT 2 0.0685 NT NT NT NT NT NT	2 0.0685 NT NT NT NT DRY NT NT 2 0.0685 NT NT NT NT DRY NT NT 2 0.0685 NT NT NT NT NT NT NT	2 0.0685 NT NT NT NT DRY NT NT NT 2 0.0685 NT NT NT NT NT DRY NT NT NT NT 2 0.0685 NT	2 0.0685 NT NT NT NT DRY NT NT NT NT 2 0.0685 NT NT NT NT NT DRY NT NT NT NT NT 2 0.0685 NT	2 0.0685 NT NT NT NT DRY NT NT NT NT NT 2 0.0685 NT NT NT NT NT DRY NT NT NT NT NT NT 2 0.0685 NT	2 0.0685 NT NT NT NT DRY NT NT NT NT NT NT ST NT ST NT ST NT ST NT ST NT NT NT NT NT NT NT NT ST NT	2 0.0685 NT NT NT NT DRY NT NT NT NT NT NT NT ST
	Mean			0.0515	0.03	0.0425	ERR	ERR	ERR	ERR	ERR	ERR	0.0445	0.04	0.04	0
	Standard Deviation (STD)			0.0085	0	0.0105	ERR	ERR	ERR	ERR	ERR	ERR	0.0025	0.007	0.009	
	Mean + 2 STD			0.0685	0.03	0.0635	ERR	ERR	ERR	ERR	ERR	ERR	0.0495	0.054	0.058	0.

ATTACHMENT D Concentration Versus Time Tables & Graphs Upper Aquifer System

Standard Deviation (STD) ERR ERR ERR ERR ERR ERR ERR ERR ERR ER																	
DATE DARAMETER LEVEL AW																	
1.1-Dichlorosthene																	
04/2399 1,1-Dichloroethene* 7	DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29_	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42_
10/1591 1,1-Dichlorosthene* 7 1 1																	
01/23/92 1,1-Dichloroethene 7	04/23/91	1,1-Dichloroethene *	7	1					•								
1.1.Dichrorethene	10/15/91	1,1-Dichloroethene *	7	1				<1	<1								
03/09/23 1.1-Dichloroethene			7	1					•	-			-				
03/05/93 1.1-Dichloroethene 7			7	1				•				•	-				
09/21/93 1,1-Dichloroelhene 7	09/30/92	1,1-Dichloroethene *	7	1													
03/23/94 1,1-Dichloroethene* 7 1	03/05/93	1,1-Dichloroethene *	7	1													
11- 13-	09/21/93	1,1-Dichloroethene *	7	1													
03/16/95 1,1-Dichloroethene	03/23/94	1,1-Dichloroethene *	7	1													
09/13/95 1,1-Dichloroethene 7	09/16/94	1,1-Dichloroethene *	7	1													
03/28/96 1,1-Dichloroethene* 7	03/16/95	1,1-Dichloroethene *	7	1													
08/20/96 1,1-Dichloroethene * 7 1 1 < 1 NT NT NT NT NT NT NT NT S1	09/13/95	1,1-Dichloroethene *	7	1				NT									
1.09/13/96 1.1-Dichloroethene	03/28/96	1,1-Dichloroethene *	7	1	<1												
03/1997 1,1-Dichloroethene * 7 1 NT 06/18/97 1,1-Dichloroethene * 7 1 1 NT	06/20/96	1,1-Dichloroethene *	7	1													
06/18/97 1,1-Dichloroethene * 7 1 1 <1 <1 NT	09/13/96	1,1-Dichloroethene *	7	1													
08/30/97 1,1-Dichloroethene * 7 1 NT O3/10/98 1,1-Dichloroethene * 7 1 NT	03/19/97	1,1-Dichloroethene *	7	1	NT			NT									
03/10/98 1,1-Dichloroethene* 7 1 NT	06/18/97	1,1-Dichloroethene *	7	1													
09/21/98 1,1-Dichloroethene * 7 1 NT NT NT NT NT NT NT NT NT 03/19/99 1,1-Dichloroethene * 7 1 NT	08/30/97	1,1-Dichloroethene *	7	1													
03/19/99 1,1-Dichloroethene* 7 1 NT	03/10/98	1,1-Dichloroethene *	7	1													
09/21/99 1,1-Dichloroethene * 7 1 NT O3/21/2000 1,1-Dichloroethene * 7 1 NT	09/21/98	1,1-Dichloroethene *	7	1													
03/21/2000 1,1-Dichloroethene* 7 1 NT	03/19/99	1,1-Dichloroethene *	7	1													
06/28/2000 1,1-Dichloroethene * 7 1 NT	09/21/99	1,1-Dichloroethene *	7	1													
09/28/2000 1,1-Dichloroethene* 7 1 NT <1			7	1													
12/27/2000 1,1-Dichloroethene* 7 1 NT			7	1			-										
03/28/2001 1,1-Dichloroethene * 7 1 NT	09/28/2000	1,1-Dichloroethene *	7	1		-	•	-									
09/02/2001 1,1-Dichloroethene * 7 1 NT			7	1		-	-										
03/19/2002 1,1-Dichloroethene * 7 1 NT		•	7	1		•	-	-									
09/19/2002 1,1-Dichloroethene * 7 1 NT			7	1				•									
03/14/2003 1,1-Dichloroethene * 7 1 NT		•	7	1				•									
09/29/2003 1,1-Dichloroethene * 7 1 NT			7	1													
03/08/2004 1,1-Dichloroethene * 7 1 NT	03/14/2003	1,1-Dichloroethene *	7	1													
09/27/2004 1,1-Dichloroethene * 7 1 NT			7	1													
Mean ERR ERR ERR ERR ERR ERR ERR ERR ERR ER			7	1													
Standard Deviation (STD) ERR ERR ERR ERR ERR ERR ERR ERR ERR ER	09/27/2004	1,1-Dichloroethene *	7	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
Standard Deviation (STD) ERR ERR ERR ERR ERR ERR ERR ERR ERR ER		Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
																ERR	ERR
												ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +		·		AQUIFER W	/ELLO								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	вотн	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
DATE	ug/L	LEVEL	AVV	IVIVV 36	IVIVV 7	IVIVVO	10100 29	IVIVV 30	1VIVV 32	IVIVV ZJ	10104 33	10100 34	10100 33	IVIVY 30	10100	10100 42
	ug/L															
04/23/91	1.1.1-Trichloroethane *	200	1				<1	<1	<1	<1		<1				
10/15/91	1,1,1-Trichloroethane *	200	1				<1	<1	<1	<1		<1				
	1,1,1-Trichloroethane *	200	1					<1	<1	<1	<1	<1				
03/23/92	1,1,1-Trichloroethane *	200	1				<1	<1	<1	<1	<1	<1				
09/30/92	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NT	NT	NT				
	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NT	NT	NT				
09/21/93	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NT	NT	NT				
03/23/94	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NT	NT	NT				
09/16/94	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NT	NT	NT				
03/16/95	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NT	NT	NT				
09/13/95	1,1,1-Trichloroethane *	200	1				NT	NT	NT	NŤ	NT	NT				
03/28/96	1,1,1-Trichloroethane *	200	1	<1			NT	NT	NT	NT	NT	NT	<1			
06/20/96	1,1,1-Trichloroethane *	200	1	<1			NT	NT	NT	NT	NT	NT	<1			
09/13/96	1,1,1-Trichloroethane *	200	1	<1			NT	NT	NT	NT	NT	NT	<1			
03/19/97	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	1,1,1-Trichloroethane *	200	1	<1			<1	NT	NT	NT	NT	NT	<1			
08/30/97	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	1,1,1-Trichloroethane *	200	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	1,1,1-Trichloroethane *	200	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	NT	<1	<1	<1
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	<1	NT	NT	NT						
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	<1	NT	NT	NT						
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	1,1,1-Trichloroethane *	200	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR		ERR	ERR	ERR	ERR	ERR	ERR	ER
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERF

		-	MEAN +				AQUIFER W	ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
Ditte	ug/L	1														
04/23/91	1,2-Dichloroethane *	5	0.4				<1	<1	<1	<1		<1				
·	1,2-Dichloroethane *	5	0.4				<1	<1	<1	<1		<1				
	1,2-Dichloroethane *	5	0.4					<1	<1	<1	<1	<1				
	1,2-Dichloroethane *	5	0.4				<1	<1	<1	<1	<1	<1				
	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
09/21/93	1.2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/23/94	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
09/16/94	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/16/95	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
09/13/95	1,2-Dichloroethane *	5	0.4				NT	NT	NT	NT	NT	NT				
03/28/96	1,2-Dichloroethane *	5	0.4	<0.4			NT	NT	NT	NT	NT	NT	<0.4			
06/20/96	1,2-Dichloroethane *	5	0.4	<0.4			NT	NT	NT	NT	NT	NT	<0.4			
09/13/96	1,2-Dichloroethane *	5	0.4	<0.4			NT	NT	NT	NT	NT	NT	<0.4			
03/19/97	1,2-Dichloroethane *	5	0.4	<0.4			NT	NT	NT	NT	NT	NT	<0.4			
06/18/97	1,2-Dichloroethane *	5	0.4	<0.4			<0.4	NT	NT	NT	NT	NT	<0.4			
08/30/97	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/99	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	1,2-Dichloroethane *	5	0.4	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	NT	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
09/28/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	<0.4	NT	NT	NT	NT	NT	DRY	<0.4	<0.4	<0.4
12/27/2000	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	NT	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	<0.4	<0.4	<0.4	NT	NT	NT	NT	NT	NT	<0.4	<0.4	<0.4
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	<0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	<0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	1,2-Dichloroethane *	5	0.4	NT	NT	NT	NT	NT	NT	NT	NŦ	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	moun · 2010															

	т	-,					A OLUCED M	(ELLO								
			MEAN +				AQUIFER W			DOTIL	DOTH					
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L		_									_				
	1,4-Dichlorobenzene *	75	1				<1	<1	<1	<1		<1				
	1,4-Dichlorobenzene *	75	1				<1	<1	<1	<1		<1				
	1,4-Dichlorobenzene *	75	1					<1	<1	<1	<1	<1				
	1,4-Dichlorobenzene *	75	1				<1	<1	<1 .	<1	<1 	<1				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1				NT	NT	NT	NT	NT	NT				
	1,4-Dichlorobenzene *	75	1	<1			NT	NT	NT	NT	NT	NT	<1			
	1,4-Dichlorobenzene *	75	1	<1			NT	NT	NT	NT	NT	NT	<1			
	1,4-Dichlorobenzene *	75	1	<1			NT	NT	NT	NT	NT	NT	<1			
	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	1,4-Dichlorobenzene *	75	1	<1			<1	NT	NT	NT	NT	NT	<1			
08/30/97	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	1,4-Dichlorobenzene *	75	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	1,4-Dichlorobenzene *	75	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
09/28/2000	1,4-Dichlorobenzene *	75	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
	1,4-Dichlorobenzene *	75	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
03/28/2001	1,4-Dichlorobenzene *	75	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	NT	<1	<1	<1
09/02/2001	1.4-Dichlorobenzene *	75	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	1,4-Dichlorobenzene *	75	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	1,4-Dichlorobenzene *	75	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	1,4-Dichlorobenzene *	75	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	ΝT
09/29/2003	1,4-Dichlorobenzene *	75	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	1,4-Dichlorobenzene *	75	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	1,4-Dichlorobenzene *	75	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean Standard Deviation (STD)			ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +				AQUIFER W									
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	mg/L															
04/23/91	Arsenic, dissolved	0.05	0.006				< 0.005	< 0.023	< 0.005	< 0.005		< 0.005				
10/15/91	Arsenic, dissolved	0.05	0.006				< 0.005		< 0.005	< 0.005		< 0.005				
01/23/92	Arsenic, dissolved	0.05	0.006					0.006	< 0.005	< 0.005	< 0.005	< 0.005				
03/23/92	Arsenic, dissolved	0.05	0.006				< 0.005	0.006	< 0.005	< 0.005	< 0.005	< 0.005				
09/30/92	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
03/05/93	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/21/93	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
03/23/94	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/16/94	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
03/16/95	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
09/13/95	Arsenic, dissolved	0.05	0.006				NT	NT	NT	NT	NT	NT				
03/28/96	Arsenic, dissolved	0.05	0.006	< 0.005			NT	NT	NT	NT	NT	NT	< 0.005			
06/20/96	Arsenic, dissolved	0.05	0.006	< 0.005			NT	NT	NT	NT	NT	NT	< 0.005			
09/13/96	Arsenic, dissolved	0.05	0.006	0.006			NT	NT	NT	NT	NT	NT	< 0.005			
03/19/97	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Arsenic, dissolved	0.05	0.006	0.006			0.007	NT	NT	NT	NT	NT	0.001			
08/30/97	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Arsenic, dissolved	0.05	0.006	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000		0.05	0.006	NT	0.006	0.01	NT	NT	NT	NT	NT	NT	NT	0.018	0.021	0.023
09/28/2000		0.05	0.006	NT	0.006	0.01	0.009	NT	NT	NT	NT	NT	DRY	0.013	0.017	0.031
12/27/2000		0.05	0.006	NT	0.007	0.008	NT	NT	NT	NT	NT	NT	NT	0.017	0.024	0.025
03/28/2001	Arsenic, dissolved	0.05	0.006	NT	0.007	0.009	0.009	NT	NT	NT	NT	NT	NT	0.013	0.024	0.028
09/02/2001		0.05	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002		0.01	0.006	NT	NT	NT	0.008	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002		0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003		0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003		0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004		0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004		0.01	0.006	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
00/2//2001	7.100.1101															
	Mean			0.006	0.0065 0.0005	0.00925 0.000829	0.00825 0.000829	0.008667 0.003771	ERR				0.001	0.01525 0.002278	0.0215 0.002872	0.026
	Standard Deviation (STD)			-					ERR				0.001	0.002276	0.002072	0.0328
	Mean + 2 STD			0.006	0.0075	0.010908	0.009908	0.016209	EKK	EKR	ERP	LAK	0.001	0.013003	0.021243	0.0320

			MEAN +				AQUIFER W	ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	mg/L															
04/23/91	Barium, dissolved	2.000	0.270				0.145	0.284	0.251	0.140		0.098				
10/15/91	Barium, dissolved	2.000	0.270				0.185	0.183	0.164	0.193		0.200				
01/23/92	Barium, dissolved	2.000	0.270					0.198	0.236	0.066	0.065	0.063				
03/23/92	Barium, dissolved	2.000	0.270				0.188	0.162	0.170	0.058	0.055	0.055				
09/30/92	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
03/05/93	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
09/21/93	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
03/23/94	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
09/16/94	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
03/16/95	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
09/13/95	Barium, dissolved	2.000	0.270				NT	NT	NT	NT	NT	NT				
03/28/96	Barium, dissolved	2.000	0.270	0.245			NT	NT	NT	NT	NT	NT	0.182			
06/20/96	Barium, dissolved	2.000	0.270	0.266			NT	NT	NT	NT	NT	NT	0.187			
09/13/96	Barium, dissolved	2.000	0.270	0.239			NT	NT	NT	NT	NT	NT	0.211			
03/19/97	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Barium, dissolved	2.000	0.270	0.234			0.257	NT	NT	NT	NT	NT	0.166			
08/30/97	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Barium, dissolved	2.000	0.270	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	Barium, dissolved	2.000	0.270	NT	0.307	0.313	NT	NT	NT	NT	NT	NT	NT	0.380	0.304	0.315
09/28/2000	Barium, dissolved	2.000	0.270	NT	0.228	0.273	0.278	NT	NT	NT	NT	NT	DRY	0.223	0.297	0.335
12/27/2000		2.000	0.270	NT	0.277	0.286	NT	NT	NT	NT	NT	NT	NT	0.188	0.269	0.326
03/28/2001	Barium, dissolved	2.000	0.270	NT	0.282	0.315	0.304	NT	NT	NT	NT	NT	NT	0.288	0.276	0.325
09/02/2001	Barium, dissolved	2.000	0.270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002		2.000	0.270	NT	NT	NT	0.295	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002		2.000	0.270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Barium, dissolved	2.000	0.270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Barium, dissolved	2.000	0.270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Barium, dissolved	2.000	0.270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Barium, dissolved	2.000	0.270	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
													0.4057	0.000==	0.000=	0.000
	Mean			0.246	0.2735	0.29675	0.236	0.20675	0.20525	0.11425	0.06	0.104	0.1865	0.26975	0.2865	0.3252
	Standard Deviation (STD)			0.012186	0.028623	0.017866	0.057936	0.046397	0.038674	0.05558	0.005	0.057736	0.016132	0.07307	0.014431	0.00708
	Mean + 2 STD			0.270372	0.330745	0.332482	0.351872	0.299544	0.282598	0.225411	0.07	0.219473	0.218765	0.415889	0.315362	0.33941

			MEAN +				AQUIFER W	/ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	вотн	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L															
04/23/91	Benzene *	5	1				<1	<1	<1	<1		<1				
10/15/91	Benzene *	5	1				<1	<1	<1	<1		<1				
01/23/92	Benzene *	5	1					<1	<1	<1	<1	<1				
03/23/92	Benzene *	5	1				<1	<1	<1	<1	<1	<1				
09/30/92	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/05/93	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
09/21/93	Benzene *	5	1				NT	NT	NT	ΝT	NT	NT				
03/23/94	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
09/16/94	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/16/95	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
09/13/95	Benzene *	5	1				NT	NT	NT	NT	NT	NT				
03/28/96	Benzene *	5	1	<1			NT	NT	NT	NT	ΝT	NT	<1			
06/20/96	Benzene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
09/13/96	Benzene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
03/19/97	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Benzene *	5	1	<1			<1	NT	NT	NT	NT	NT	<1			
08/30/97	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Benzene *	5	1	ΝT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
3/21/2000	Benzene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
6/28/2000	Benzene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
9/28/2000	Benzene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
2/27/2000	Benzene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
3/28/2001	Benzene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	NT	<1	<1	<1
9/02/2001	Benzene *	5	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
3/19/2002	Benzene *	5	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
9/19/2002	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3/14/2003	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
9/29/2003	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
3/08/2004	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
9/27/2004	Benzene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	E
	Standard Deviation (STD)			ERR	ERR	ERR			ERR	ERR	ERR	ERR	ERR	ERR	ERR	Е
	Mean + 2 STD			ERR	ERR	ERR			ERR	ERR	ERR	ERR	ERR	ERR	ERR	El

<u></u>	T		MEAN +			<u></u>	AQUIFER V	VELLS							 	
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
DATE	mg/L		1													
04/23/91	Cadmium, dissolved	0.005	0.001				<0.001	< 0.001	<0.001	<0.001		<0.001				
10/15/91	Cadmium, dissolved	0.005	0.001				<0.001	<0.001	<0.001	<0.001		<0.001				
01/23/92	Cadmium, dissolved	0.005	0.001					<0.001	<0.001	<0.001	<0.001	<0.001				
03/23/92	Cadmium, dissolved	0.005	0.001				<0.001	<0.001	<0.001	<0.001	<0.001	<0.001				
09/30/92	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
03/05/93	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
09/21/93	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
03/23/94	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
09/16/94	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
03/16/95	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
09/13/95	Cadmium, dissolved	0.005	0.001				NT	NT	NT	NT	NT	NT				
03/28/96	Cadmium, dissolved	0.005	0.001	<0.001			NT	NT	NT	NT	NT	NT	<0.001			
06/20/96	Cadmium, dissolved	0.005	0.001	<0.001			NT	NT	NT	NT	NT	NT	<0.001			
09/13/96	Cadmium, dissolved	0.005	0.001	<0.001			NT	NT	NT	NT	NT	NT	<0.001			
03/19/97	Cadmium, dissolved	0.005	0.001	<0.001			NT	NT	NT	NT	NT	NT	<0.001			
06/18/97	Cadmium, dissolved	0.005	0.001	<0.001			<0.001	NT	NT	NT	NT	NT	<0.001			
08/30/97	Cadmium, dissolved	0.005	0.001	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Cadmium, dissolved	0.005	0.001	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Cadmium, dissolved	0.005	0.001	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Cadmium, dissolved	0.005	0.001	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Cadmium, dissolved	0.005	0.001	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Cadmium, dissolved	0.005	0.001	NT			NT	NT	NT	NT	NT	NT	NT	-0.004	.0.004	-0.004
06/28/2000	Cadmium, dissolved	0.005	0.001	NT	<0.001	<0.001	NT	NT	NT	NT	NT	NT	NT	<0.001	< 0.001	< 0.001
09/28/2000	Cadmium, dissolved	0.005	0.001	NT	<0.001	<0.001	<0.001	NT	NT	NT	NT	NT	NT	<0.001	<0.001	<0.001
12/27/2000	Cadmium, dissolved	0.005	0.001	NT	<0.001	<0.001	NT	NT	NT	NT	NT	NT	NT	<0.001	<0.001	<0.001
03/28/2001	Cadmium, dissolved	0.005	0.001	NT	<0.001	<0.001	<0.001	NT	NT	NT	NT	NT	NT	<0.001	<0.001 NT	<0.001
09/02/2001	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT		NT
03/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	NT	<0.001	NT	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT
09/19/2002	· · ·	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
03/14/2003	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT	NT	NT NT	NT
09/29/2003	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT			NT	NT NT	NT	NT
03/08/2004	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT	NT NT
09/27/2004	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	NT	NT	NI	NI	IN I	IN I	IN I	INI	NI
	Mean			ERR	ERR	ERR							ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR							ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	R ERR	ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +				AQUIFER W	ELLS	,							
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	вотн	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L															
04/23/91	Carbon tetrachloride *	5	0.3				<1	<1	<1	<1		<1				
10/15/91	Carbon tetrachloride *	5	0.3				<1	<1	<1	<1		<1				
01/23/92	Carbon tetrachloride *	5	0.3					<1	<1	<1	<1	<1				
03/23/92	Carbon tetrachloride *	5	0.3				<1	<1	<1	<1	<1	<1				
09/30/92	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/05/93	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
09/21/93	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/23/94	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
09/16/94	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/16/95	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
09/13/95	Carbon tetrachloride *	5	0.3				NT	NT	NT	NT	NT	NT				
03/28/96	Carbon tetrachloride *	5	0.3	<0.3			NT	NT	NT	NT	NT	NT	<0.3			
06/20/96	Carbon tetrachloride *	5	0.3	<0.3			NT	NT	NT	NT	NT	NT	<0.3			
09/13/96	Carbon tetrachloride *	5	0.3	<0.3			NT	NT	NT	NT	NT	NT	<0.3			
03/19/97	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Carbon tetrachloride *	5	0.3	<0.3			<0.3	NT	NT	NT	NT	NT	<0.3			
08/30/97	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT			
03/21/2000	Carbon tetrachloride *	5	0.3	NT			NT	NT	NT	NT	NT	NT	NT	-0.0	-0.0	-0.0
06/28/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
09/28/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	<0.3	NT	NT	NT	NT	NT	DRY	<0.3	<0.3	< 0.3
12/27/2000	Carbon tetrachloride *	5	0.3	NT	<0.3	<0.3	NT	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
03/28/2001	Carbon tetrachloride *	5	0.3	NT	< 0.3	<0.3	<0.3	NT	NT	NT	NT	NT	NT	<0.3	<0.3	<0.3
09/02/2001	Carbon tetrachloride *	5	0.3	NT	NT	NT	<0.3	NT	NT NT	NT						
03/19/2002	Carbon tetrachloride *	5	0.3	NT	NT	NT	<0.3	NT	NT	NT	NT	NT	NT	NT NT	NT	NT NT
09/19/2002	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT			NT
09/29/2003	Carbon tetrachloride *	5	0.3	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT	NT NT
03/08/2004	Carbon tetrachloride *	5	0.3							NT NT	NT	NT	NT	NT	NT	NT
09/27/2004	Carbon tetrachloride *	5	0.3	NT	NT	NT	NT	NT	NT	NI	NI	INT	INT	NI	NI	INT
	Mean			ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	ERR ERR	
	Standard Deviation (STD) Mean + 2 STD			ERR	ERR	ERR		ERR								

PARAMETER mg/L Oxygen Demand	ACTION LEVEL	2 STD AW 13 13 13 13 13 13 13 13 13 13 13 13 13	U.A.W MW36	D.A.W MW 7	D.A.W MW 8	D.A.W MW 29 20.1 19.4 50 180 <10 <10 <26 <10 <10 NT	D.A.W MW 30 26.3 13.5 <10 <10 <10 <10 <10 <10 <10 <10	D.A.W MW 32 18 <10 <10 <10 <10 <10 <10 <10 <10 <10	33.4 17.2 12 20 230 <10 <10 <10 39 <10	BOTH MW 33 33.4 54 28 <10 <10 19 13 69 <10	BOTH MW 34 120.1 14.3 <10 10 107 <10 <10 <10 <10 29 <10	BOTH MW35	D.A.W MW 38	D.A.W MW 41	D.A.W MW 42
mg/L Oxygen Demand		AW 13 13 13 13 13 13 13 13 13 13 13 13 13	MW36 11 10 <10 <10			20.1 19.4 50 180 <10 <10 26 <10 <10	26.3 13.5 <10 <10 70 <10 <10 <10 <10 <10 <10	18 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	33.4 17.2 12 20 230 <10 <10 <10 <10 39	33.4 54 28 <10 <10 19 13 69 <10	120.1 14.3 <10 10 107 <10 <10 <10 <10 29	MW35	MW 38	MW 41	MW 4:
mg/L Oxygen Demand		13 13 13 13 13 13 13 13 13 13 13 13 13 1	10 <10 <10			19.4 50 180 <10 <10 <10 <10 <10 26 <10 <10	13.5 <10 <10 70 <10 <10 <10 <10 <10 <10	<10 <10 <10 74 <10 <10 <10 <10 <10 <10	17.2 12 20 230 <10 <10 <10 <10 39	33.4 54 28 <10 <10 19 13 69 <10	14.3 <10 10 107 <10 <10 <10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13 13 13 13 13 13 13 1	10 <10 <10			19.4 50 180 <10 <10 <10 <10 <10 26 <10 <10	13.5 <10 <10 70 <10 <10 <10 <10 <10 <10	<10 <10 <10 74 <10 <10 <10 <10 <10 <10	17.2 12 20 230 <10 <10 <10 <10 39	33.4 54 28 <10 <10 19 13 69 <10	14.3 <10 10 107 <10 <10 <10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13 13 13 13 13 13 13	10 <10 <10			50 180 <10 <10 <10 26 <10 <10	<10 <10 70 <10 <10 <10 <10 <10 30 <10	<10 <10 74 <10 <10 <10 <10 <46 <10	12 20 230 <10 <10 <10 <10 39	33.4 54 28 <10 <10 19 13 69 <10	<10 10 107 <10 <10 <10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13 13 13 13 13 13	10 <10 <10			50 180 <10 <10 <10 26 <10 <10	<10 70 <10 <10 <10 <10 <10 30 <10	<10 74 <10 <10 <10 <10 <46 <10	20 230 <10 <10 <10 <10 39	54 28 <10 <10 19 13 69 <10	10 107 <10 <10 <10 <10 <29				
Oxygen Demand		13 13 13 13 13 13 13 13 13 13 13 13	10 <10 <10			180 <10 <10 <10 26 <10 <10	70 <10 <10 <10 <10 <10	74 <10 <10 <10 <10 <10	230 <10 <10 <10 <10 39	28 <10 <10 19 13 69 <10	107 <10 <10 <10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13 13 13 13 13	10 <10 <10			<10 <10 <10 <10 26 <10	<10 <10 <10 <10 30 <10	<10 <10 <10 <10 46 <10	<10 <10 <10 <10 39	<10 <10 19 13 69 <10	<10 <10 <10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13 13 13 13	10 <10 <10			<10 <10 <10 26 <10 <10	<10 <10 <10 30 <10	<10 <10 <10 46 <10	<10 <10 <10 39	<10 19 13 69 <10	<10 <10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13 13 13	10 <10 <10			<10 <10 26 <10 <10	<10 <10 30 <10	<10 <10 46 <10	<10 <10 39	19 13 69 <10	<10 <10 29				
Oxygen Demand		13 13 13 13 13 13 13	10 <10 <10			<10 26 <10 <10	<10 30 <10	<10 46 <10	<10 39	13 69 <10	<10 29				
Oxygen Demand		13 13 13 13 13 13	10 <10 <10			26 <10 <10	30 <10	46 <10	39	69 <10	29				
Oxygen Demand		13 13 13 13 13 13	10 <10 <10			<10 <10	<10	<10		<10					
Oxygen Demand		13 13 13 13 13	10 <10 <10			<10			<10		-10				
Oxygen Demand	=	13 13 13 13	10 <10 <10				<10	<10			-10				
Oxygen Demand	=	13 13 13 13	10 <10 <10					-10	<10	<10	<10	<10			
Oxygen Demand	= =	13 13 13	<10 <10				NT	NT	NT	NT	NT	10			
Oxygen Demand	_	13 13	<10			<10	<10	<10	<10	12	<10	<10			
Oxygen Demand Oxygen Demand Oxygen Demand Oxygen Demand Oxygen Demand Oxygen Demand		13				<10	<10	<10	<10	14	<10	<10			
Oxygen Demand Oxygen Demand Oxygen Demand Oxygen Demand			<10			<10	NT	NT	NT	NT	NT	<10			
Oxygen Demand Oxygen Demand Oxygen Demand		13	12			<10	<10	<10	<10	<10	<10	<10			
Oxygen Demand Oxygen Demand		13	12			<10	<10	<10	<10	<10	<10	<10			
Oxygen Demand		13	12			<10	<10	<10	<10	<10	<10	<10			
	-	13	<10			<10	<10	<10	<10	<10	<10	<10			
		13	<10			<10	<10	<10	<10	<10	<10	<10			
Oxygen Demand	-	13	NT			<10	<10	<10	<10	<10	55	NT			
Oxygen Demand		13	NT	<10	11	NT	NT	NT	NT	NT	NT	NT	<10	11	<10
															<10
								200							<10
						17.10									<10
					100									11/41	<10
															<10
	1770							1000					2.00		<10
															<10
															<10
									1.00						<10
													C 122		14
Oxygen Demand		13	<10	<10	10	< 10	<10	10	10	31	21	21	10	12	14
000000	Daygen Demand Daygen Demand	Oxygen Demand	Dxygen Demand 13 Dxygen Demand 13	Dxygen Demand 13 <10	Dxygen Demand 13 <10 <10 Dxygen Demand 13 NT <10 Dxygen Demand 13 <10 <10 Dxygen Demand 13 <10 Dxygen Demand 13 <10 Dxygen Demand 13 Dxygen Demand	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Doxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Dxygen Demand 13 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10

		Secondary	MEAN +		THE PARTY		AQUIFER WI		D 4 14/	DOTL	POTU	DOTL	POTU	D A W/	DAW	D.A.V
		MCL	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W MW 32	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.A.W MW 38	D.A.W MW 41	MW 4
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	IVIVV 32	IVIVV 23	IVIVV 33	10100 34	IVIVVOO	IVIVV 30	10144 -4.1	12144
04/00/04	mg/L	250	17.2443				4	2	6.5	13.5		6				
04/23/91	Chloride						1.89	1.41	4.24	17.4		6.6				
10/15/91	Chloride	250	17.2443					2.6	42.4	43.5	44.6	10				
1/23/92	Chloride	250	17.2443				2.7	2.6	8.5	70.8	70.8	9				
03/23/92	Chloride	250	17.2443				3.7			83	28	3				
09/30/92	Chloride	250	17.2443				3	2	4		22.5	<10				
03/05/93	Chloride	250	17.2443					<10	<10	101		1000				
09/21/93	Chloride	250	17.2443				<10	<10	<10	20	26	<10				
03/23/94	Chloride	250	17.2443				<10	<10	<10	65.1	29.2	<10				
09/16/94	Chloride	250	17.2443				<10	<10	<10	82	21	<10				
03/16/95	Chloride	250	17.2443				<10	<10	<10	76	27	<10				
9/13/95	Chloride	250	17.2443				<10	<10	10	69	22	15				
03/28/96	Chloride	250	17.2443	14			4.2	68	8.2	173	22	8.9	30			
06/20/96	Chloride	250	17.2443	3.8			NT	NT	NT	NT	NT	NT	44			
09/13/96	Chloride	250	17.2443	1.7			2.2	2.6	7.3	5.3	23.6	7.1	54.2			
3/19/97	Chloride	250	17.2443	<10			<10	<10	<10	23	38	17	96			
6/18/97	Chloride	250	17.2443	<10			<10	NT	NT	NT	NT	NT	95			
		250	17.2443	<10			<10	<10	<10	30	19	<10	86			
8/30/97	Chloride	250	17.2443	<10			<10	<10	<10	72	24	10	37			
3/10/98	Chloride	250	17.2443	<10			<10	<10	<10	31	19	10	81			
9/21/98	Chloride	250	17.2443	<10			<10	<10	<10	83	21	15	29			
3/18/99	Chloride						<10	<10	<10	52	20	26	67			
)9/21/99	Chloride	250	17.2443	<10			<10	<10	<10	55	23	45	NT			
3/21/2000	Chloride	250	17.2443	NT	-40	-10		NT	NT	NT	NT	NT	NT	15	11	<
5/28/2000	Chloride	250	17.2443	NT	<10	<10	NT	<10	<10	124	24	13	DRY	18	<10	1
9/28/2000	Chloride	250	17.2443	<10	11	<10	<10			NT	NT	NT	NT	19	10	1
2/27/2000	Chloride	250	17.2443	NT	10	<10	NT	NT	NT				87	21	<10	1
3/28/2001	Chloride	250	17.2443	<10	13	<10	<10	<10	<10	229	24	105	150	23	10	2
/02/2001	Chloride	250	17.2443	<10	14	<10	<10	<10	10	135	29	56			<10	<
/19/2002	Chloride	250	17.2443	<10	11	<10	<10	<10	<10	142	53	52	179	26		
9/19/2002	Chloride	250	17.2443	<10	11	<10	<10	<10	<10	181	44	25	111	29	<10	1
3/14/2003	Chloride	250	17.2443	<10	12	<10	<10	<10	<10	163	383	34	185	31	<10	1
9/29/2003	Chloride	250	17.2443	<10	13	<10	<10	<10	<10	165	30	23	141	31	10	1
3/08/2004		250	17.2443	<10	14	34	<10	<10	19	197	45	43	149	31	<10	1
9/27/2004		250	17.2443	<10	14	<10	<10	<10	15	49	51	21	114	30	11	1
LITEOUT	O'llorido															
					40.0	0.4	2.425	44 60442	12 20545	97.05172	43.84074	24.37391	96.4	24.90909	10.4	12
	Mean			6.5	12.3	34		11.60143	12.28545	87.95172		22.85033	47.80246	5.680182	0.489898	3.5
	Standard Deviation (STD)			5.37215	1.417745	0		23.02829	10.41202	60.50629	67.68291				11.3798	19
	Mean + 2 STD			17.2443	15.13549	34	4.923551	57.65802	33.10949	208.9643	179.2066	70.07457	192.0049	36.26945	11.3798	19

	_		MEAN +				AQUIFER W	IFILS							_	
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	вотн	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
DAIL	mg/L	LLVLL	7,11	1111100	10100	10177 0	10141 25	11111 00				1011101		00		10,000
04/23/91	Chromium, dissolved	0.1	0.03				<0.03	< 0.03	< 0.03	< 0.03		<0.03				
10/15/91	Chromium, dissolved	0.1	0.03				<0.03	<0.03	< 0.03	< 0.03		<0.03				
01/23/92	Chromium, dissolved	0.1	0.03					<0.03	<0.03	< 0.03	< 0.03	<0.03				
03/23/92	Chromium, dissolved	0.1	0.03				<0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03				
09/30/92	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
03/05/93	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
09/21/93	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
03/23/94	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
09/16/94	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
03/16/95	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
09/13/95	Chromium, dissolved	0.1	0.03				NT	NT	NT	NT	NT	NT				
03/28/96	Chromium, dissolved	0.1	0.03	< 0.03			NT	NT	NT	NT	NT	NT	< 0.03			
06/20/96	Chromium, dissolved	0.1	0.03	< 0.03			NT	NT	NT	NT	NT	NT	< 0.03			
09/13/96	Chromium, dissolved	0.1	0.03	< 0.03			NT	NT	NT	NT	NT	NT	< 0.03			
03/19/97	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Chromium, dissolved	0.1	0.03	< 0.03			< 0.03	NT	NT	NT	NT	NT	< 0.03			
08/30/97	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	ΝT	NT			
03/21/2000	Chromium, dissolved	0.1	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	Chromium, dissolved	0.1	0.03	NT	<0.03	< 0.03	NT	NT	NT	NT	NT	NT	NT	<0.03	<0.03	< 0.03
09/28/2000	Chromium, dissolved	0.1	0.03	NT	<0.03	<0.03	< 0.03	NT	NT	NT	NT	NT	DRY	<0.03	<0.03	<0.03
12/27/2000	Chromium, dissolved	0.1	0.03	NT	<0.03	<0.03	NT	NT	NT	NT	NT	NT	NT	<0.03	<0.03	<0.03
03/28/2001	Chromium, dissolved	0.1	0.03	NT	<0.03	<0.03	< 0.03	NT	NT	NT	NT	NT	NT	<0.03	<0.03	<0.03
09/02/2001	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002		0.1	0.03	NT	NT	NT	<0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	•	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Chromium, dissolved	0.1	0.03	NT	NT	NŤ	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +				AQUIFER W	/ELLS								
DATE	PARAMETER	ACTION LEVEL	2 STD AW	U.A.W MW36	D.A.W MW 7	D.A.W MW 8	D.A.W MW 29	D.A.W MW 30	D.A.W MW 32	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.A.W MW 38	D.A.W MW 41	D.A.V MW 4
	NAME OF TAXABLE										100					
03/16/95 Co	nductivity, mv		861.2347				280	300	390	510	420	550				
09/13/95 Co	nductivity, mv		861.2347				360	400	740	770	720	660				
03/28/96 Co	nductivity, mv		861.2347	490			340	400	580	640	500	460	520			
06/20/96 Co	nductivity, mv		861.2347	290			NT	NT	NT	NT	NT	NT	460			
09/13/96 Co	nductivity, mv	-	861.2347	280			330	350	510	60	500	570	440			
03/19/97 Co	nductivity, mv		861.2347	340			350	400	570	620	590	580	600			
06/18/97 Co	nductivity, mv		861.2347	280			250	NT	NT	NT	NT	NT	380			
08/30/97 Co	inductivity, mv		861.2347	280			310	350	430	540	410	490	490			
03/10/98 Co	nductivity, mv		861.2347	410			370	410	630	510	360	470	390			
	inductivity, mv		861.2347	280			300	420	500	460	590	540	490			
03/18/99 Co	inductivity, mv		861.2347	625			628	812	1208	1370	902	1438	1005			
09/21/99 Co	inductivity, mv		861.2347	280			300	420	500	460	590	540	490			
03/21/2000 Co			861.2347	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000 Co			861.2347	NT	621	617	NT	NT	NT	NT	NT	NT	NT	782	656	737
09/28/2000 Co			861.2347	688	680	700	1245	857	1218	1083	1009	1209	DRY	909	716	837
12/27/2000 Co			861.2347	NT	717	728	NT	NT	NT	NT	NT	NT	NT	923	744	848
03/28/2001 Co			861,2347	812	764	794	725	1000	1304	1161	1730	3000	1246	1080	826	986
09/02/2001 Co			861.2347	687	674	586	NT	845	1137	1455	1098	1455	1889	960	681	844
03/19/2002 Co			861.2347	NT	684	663	724	914	1180	1490	1313	NT	1167	1048	722	85
09/19/2002 Co			861.2347	640	703	673	686	805	1050	1225	1182	1287	1209	1074	665	80
03/14/2003 Co			861.2347	499	731	710	658	795	1056	833	732	1020	709	944	614	79
09/29/2003 Co			861.2347	584	606	593	615	724	886	1241	890	1055	886	844	588	708
03/08/2004 Co			861.2347	646	704	709	787	886	1256	1360	1154	1237	1124	1142	764	820
	onductivity, mv		861.2347	750	822	774	760	848	1216	1546	1300	1218	995	1264	790	890

		İ	MEAN +				AQUIFER V								914	
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	mg/L															
04/23/91	1 Copper, dissolved	1.3	0.03				<0.03	<0.03	<0.03	<0.03		<0.03				
10/15/91	1 Copper, dissolved	1.3	0.03				<0.03	<0.03	<0.03	<0.03		<0.03				
	2 Copper, dissolved	1.3	0.03					<0.03	<0.03	<0.03	<0.03	<0.03				
	2 Copper, dissolved	1.3	0.03				<0.03	<0.03	<0.03	< 0.03	<0.03	<0.03				
	2 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
03/05/93	3 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
09/21/93	3 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
03/23/94	1 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
09/16/94	1 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
03/16/95	5 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
09/13/95	5 Copper, dissolved	1.3	0.03				NT	NT	NT	NT	NT	NT				
03/28/96	6 Copper, dissolved	1.3	0.03	< 0.03			NT	NT	NT	NŤ	NT	NT	< 0.03			
06/20/96	Copper, dissolved	1.3	0.03	< 0.03			NT	NT	NT	NT	NT	NT	< 0.03			
09/13/96	Copper, dissolved	1.3	0.03	< 0.03			NT	NT	NT	NT	NT	NT	<0.03			
	7 Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	7 Copper, dissolved	1.3	0.03	< 0.03			<0.03	NT	NT	NT	NT	NT	<0.03			
	7 Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
	3 Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
	3 Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
	O Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
	O Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
	Copper, dissolved	1.3	0.03	NT			NT	NT	NT	NT	NT	NT	NT			
	Copper, dissolved	1.3	0.03	NT	<0.03	<0.03	NT	NT	NT	NT	NT	NT	NT	<0.03	<0.03	<0.03
09/28/2000	Copper, dissolved	1.3	0.03	NT	<0.03	<0.03	<0.03	NT	NT	NΤ	NT	NT	DRY	<0.03	<0.03	< 0.03
	Copper, dissolved	1.3	0.03	NT	<0.03	<0.03	NT	NT	NT	NT	NT	NT	NT	<0.03	0.03	0.03
	1 Copper, dissolved	1.3	0.03	NT	<0.03	<0.03	NT	NT	NT	NT	NT	NŤ	NT	<0.03	<0.03	<0.03
	1 Copper, dissolved	1.3	0.03	NT	ΝT	NT	NT	ΝT	NT	NT	NT	NT	NT	NT	NT	NT
	2 Copper, dissolved	1.3	0.03	NT	NT	NT	<0.005	NT	NT	ΝT	NT	NT	NT	NT	NT	NT
	2 Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3 Copper, dissolved	1.3	0.03	NT	NT	NT	NT	ΝT	NT	NT	NT	NT	NT	NT	NT	NT
	3 Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	1 Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	4 Copper, dissolved	1.3	0.03	NT	NT	NT	NT	NT	NT	ΝT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR		ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR			ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +			F	QUIFER W	ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 4
	mg/L								0.00	0.477						
	Iron, dissolved		1.100624				0.05	< 0.03	<0.09	0.177		0.133				
	Iron, dissolved		1.100624				1.3	0.546	0.116	0.205		0.767				
	Iron, dissolved		1.100624					< 0.03	<0.03	< 0.03	< 0.03	< 0.03				
	Iron, dissolved		1.100624				0.743	< 0.03	0.048	0.121	0.052	< 0.03				
	Iron, dissolved		1.100624				< 0.03	< 0.03	< 0.03	< 0.03	0.033	0.043				
	Iron, dissolved		1.100624					< 0.03	< 0.03	< 0.03	0.035	< 0.03				
	Iron, dissolved		1.100624				< 0.03	< 0.03	1.07	< 0.03	2.46	0.05				
	Iron, dissolved		1.100624				< 0.03	0.072	2.29	< 0.03	9.65	0.084				
	Iron, dissolved		1.100624				0.037	0.059	4.3	0.05	2.9	0.55				
	Iron, dissolved		1.100624				< 0.03	0.111	2.55	0.038	1.24	0.47				
09/13/95	Iron, dissolved		1.100624				< 0.03	0.131	2.2	< 0.03	8.5	0.317				
03/28/96	Iron, dissolved		1.100624	< 0.03			< 0.03	0.228	2.68	< 0.03	5.77	0.386	0.067			
	Iron, dissolved		1.100624	< 0.03			NT	NT	NT	NT	NT	NT	0.927			
09/13/96	Iron, dissolved		1.100624	< 0.03			< 0.03	0.112	2.37	0.134	2.27	1.3	1.02			
03/19/97	Iron, dissolved		1.100624	0.329			0.032	0.573	4.65	< 0.03	7.18	< 0.03	0.484			
06/18/97	Iron, dissolved		1.100624	< 0.03			0.086	NT	NT	NT	NT	NT	0.523			
08/30/97	Iron, dissolved		1.100624	0.559			0.064	0.144	6.19	0.076	5.02	1.93	5.05			
03/10/98	Iron, dissolved		1.100624	1.09			0.041	0.057	4.41	0.717	5.83	1.52	0.5			
09/21/98	Iron, dissolved		1.100624	0.61			0.085	0.059	1.63	0.166	2.2	3.09	0.415			
03/18/99	Iron, dissolved		1.100624	0.767			0.052	0.48	6.08	0.131	5.64	4.78	0.162			
	Iron, dissolved		1.100624	0.519			0.043	0.197	2.99	0.076	3.99	5.53	0.337			
	Iron, dissolved		1.100624	NT			0.252	0.447	2.1	0.371	5.69	4.15	NT			
	Iron, dissolved		1.100624	NT	0.146	2.71	NT	0.904	0.073	1.61						
	Iron, dissolved		1.100624	< 0.03	0.533	3.23	0.031	0.175	0.035	< 0.03	0.303	3.3	DRY	0.198	< 0.03	2.58
	Iron, dissolved		1.100624	NT	0.412	2.22	NT	0.138	0.909	2.3						
	Iron, dissolved		1.100624	0.196	0.094	2.1	< 0.03	0.08	0.493	< 0.03	2.7	< 0.03	0.108	0.049	1.24	2.12
	Iron, dissolved		1.100624	0.103	0.244	2.6	< 0.03	0.088	3.07	< 0.03	4.47	6.97	0.168	0.197	0.783	0.923
	Iron, dissolved		1.100624	< 0.03	0.178	2.91	< 0.03	0.074	1.14	< 0.03	4.46	0.654	< 0.03	0.292	< 0.03	1.99
	Iron, dissolved		1.100624	< 0.03	0.184	3.4	< 0.03	0.351	1.11	< 0.03	4.12	5.65	< 0.03	0.041	< 0.03	1.96
	Iron, dissolved		1.100624	< 0.03	1.31	4.11	0.153	0.192	1.26	< 0.03	4.95	4.67	< 0.03	0.795	0.103	1.37
	Iron, dissolved		1.100624	< 0.030	0.178	1.28	< 0.030	0.296	1.29	< 0.030	0.556	5.63	0.078	0.536	0.45	1.37
	Iron, dissolved		1.100624	0.073	0.128	3.82	< 0.03	< 0.03	< 0.03	0.121	7.99	0.231	0.109	2.19	2.23	3.1
	Iron, dissolved		1.100624	< 0.030	0.267	4.16	0.034	0.454	< 0.030	0.034	2.56	0.39	< 0.030	0.229	2.23	1.94
00/2//2004	iron, dissorted			0.000	0.201		0.001				2.00			0.220		
	Mean			0.471778	0.334	2.958182	0.2002	0.223909	2.350957	0.172643	3.868038	2.191458	0.710571	0.506273	1.00225	
	Standard Deviation (STD) Mean + 2 STD			0.314423 1.100624	0.332675 0.999351	0.856672 4.671527	0.342513 0.885225	0.168775 0.561459	1.741168 5.833292	0.172464 0.517571	2.674231 9.216501	2.232227 6.655912	1.238248 3.187068	0.599397 1.705067	0.79884 2.599931	0.5

		Superior	MEAN +			<u> Ernell</u>	AQUIFER W						> _ (
ATE	PLA PLA A APPROPRIA	ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.V
TE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 4
1/22/01	mg/L Lead, dissolved	0.015	0.005				< 0.005	< 0.005	0.011	< 0.005		< 0.005				
	Lead, dissolved	0.015	0.005				0.003	0.006	0.008	0.007		0.003				
	Lead, dissolved	0.015	0.005				0.007	< 0.005	< 0.005	< 0.007	< 0.005	<0.005				
	Lead, dissolved	0.015	0.005				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005				
	Lead, dissolved	0.015	0.005				NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005				NT	NT	NT	NT	NT	NT				
		0.015	0.005				NT	NT	NT	NT	NT	NT				
	Lead, dissolved Lead, dissolved	0.015	0.005				NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005				NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005				NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005				NT	NT	NT	NT	NT	NT				
	Lead, dissolved	0.015	0.005	< 0.005			NT	NT	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	< 0.005			NT	NT	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	< 0.005			NT	NT	NT	NT	NT	NT	< 0.005			
	Lead, dissolved	0.015	0.005	NT			NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	< 0.005			< 0.005	NT	NT	NT	NT	NT	< 0.005			
		0.015	0.005	NT			NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved		0.005	NT			NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	NT			NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved Lead, dissolved	0.015	0.005	NT			NT	NT	NT	NT	NT	NT	NT			
		0.015					NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved Lead, dissolved	0.015 0.015	0.005	NT NT			NT	NT	NT	NT	NT	NT	NT			
	Lead, dissolved	0.015	0.005	NT	< 0.005	< 0.005	NT	NT	NT	NT	NT	NT	NT	< 0.005	< 0.005	0.0
	Lead, dissolved	0.015	0.005	NT	< 0.005	< 0.005	< 0.005	NT	NT	NT	NT	NT	DRY	< 0.005	< 0.005	<0.0
	Lead, dissolved	0.015	0.005	NT	< 0.005	< 0.005	NT	NT	NT	NT	NT	NT	NT	< 0.005	< 0.005	<0.0
	Lead, dissolved	0.015	0.005	NT	< 0.005	< 0.005	< 0.005	NT	NT	NT	NT	NT	NT	< 0.005	< 0.005	<0.0
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Lead, dissolved	0.015	0.005	NT	NT	NT	< 0.005	NT	N							
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N.
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Lead, dissolved	0.015	0.005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N.
	2000, 0.000.700	0.010	0.000							***					100	
	Mean			ERR	ERR	ERR	0.007	0.006	0.0095	0.007	ERR	0.01	ERR	ERR	ERR	
	Standard Deviation (STD)			ERR	ERR	ERR			0.0015	0			ERR	ERR	ERR	
	Mean + 2 STD			ERR	ERR	ERR		0.006	0.0125	0.007	ERR	0.01	ERR	ERR	ERR	
						Lead. D	Dissolved	1								
					_		quifer Wells								Mean + 2 ST	D
	0.012													-	MW-36	- 1
		Ą													MW-29	- 1
	0.01	\ @						*								
		\ A													MW-7	
	٧	X													MW-30	
	0.008 —	14													MW-32	- 1
		*												(1779)	MW-8	- 1
	O.000 — — — — — — — — — — — — — — — — — —	P														- 1
	hine	_///												A	MW-25	
	0.004	// 1/2													MW-33	- 1
	§ 0.004													-0-	MW-34	
		//												-	MW-35	
		18												- 1		
	0.002	4												0.00	1 6147 20	
	0.002														MW-38	
	0.002				* ***	*** *		*****							MW-38 MW-41	

			MEAN +				AQUIFER W	ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW
	mg/L															
04/23/91	Magnesium, dissolved		45.47475				20.2	41.1	67.2	35.6		29.5				
10/15/91	Magnesium, dissolved		45.47475				26.3	38.6	57	31.4		31.7				
01/23/92	Magnesium, dissolved		45.47475					35.8	59.6	56.4	58	68				
	Magnesium, dissolved		45.47475				25.7	31.3	62.8	53.9	65.7	65.7				
	Magnesium, dissolved		45.47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45,47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45.47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45,47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45.47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45.47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45.47475				NT	NT	NT	NT	NT	NT				
	Magnesium, dissolved		45.47475	43.7			NT	NT	NT	NT	NT	NT	51.8			
	Magnesium, dissolved		45.47475	31.3			NT	NT	NT	NT	NT	NT	48.6			
	Magnesium, dissolved		45.47475	32.6			NT	NT	NT	NT	NT	NT	58.1			
	Magnesium, dissolved		45,47475	NT			NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		45.47475	29			34.4	NT	NT	NT	NT	NT	45			
	Magnesium, dissolved		45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
	Magnesium, dissolved		45.47475	NT			NT	NT	NT	NT	NT	NT	NT			
		3	45.47475	NT	29.1	27.8	NT	NT	NT	NT	NT	NT	NT	36.7	32.4	4
	Magnesium, dissolved						33.2	0.000	3.7.0		1000	NT	DRY	31.6	32.4	41
9/28/2000	Magnesium, dissolved		45.47475	NT	27.7	26.4		NT	NT NT	NT	NT		NT	33.6	33.8	41
2/2//2000	Magnesium, dissolved		45.47475	NT	28.8	27.8	NT	NT		NT	NT	NT				
	Magnesium, dissolved		45.47475	NT	26.9	25.7	29.2	NT	NT	NT	NT	NT	NT	35.6	31.4	38
	Magnesium, dissolved		45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	N
	Magnesium, dissolved		45.47475	NT	NT	NT	29.1	NT	NT	NT	NT	NT	NT	NT	NT	١
	Magnesium, dissolved		45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	١
	Magnesium, dissolved		45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	١
	Magnesium, dissolved		45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	١
	Magnesium, dissolved		45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT NT	NT	1
	Magnesium, dissolved		45.47475	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT			1

																
			MEAN +				AQUIFER V				50-11					
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	mg/L															
	1 Mercury, dissolved	0.002	0.0005				<0.001	<0.001	<0.001	<0.001		<0.001				
	1 Mercury, dissolved	0.002	0.0005				<0.0005	<0.0005	<0.0005	<0.0005		<0.0005				
	2 Mercury, dissolved	0.002	0.0005					<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
	2 Mercury, dissolved	0.002	0.0005				<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005				
	2 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
03/05/93	3 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
	3 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
03/23/94	4 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
09/16/94	4 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
03/16/95	5 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
09/13/95	5 Mercury, dissolved	0.002	0.0005				NT	NT	NT	NT	NT	NT				
03/28/96	6 Mercury, dissolved	0.002	0.0005	< 0.0005			NT	NT	NT	NT	NT	NT	<0.0005			
06/20/96	6 Mercury, dissolved	0.002	0.0005	< 0.0005			NT	NT	NT	NT	NT	NT	<0.0005			
09/13/96	6 Mercury, dissolved	0.002	0.0005	< 0.005			NT	NT	NT	NT	NT	NT	<0.0005			
03/19/97	7 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	7 Mercury, dissolved	0.002	0.0005	< 0.0005			< 0.0005	NT	NT	NT	NT	NT	< 0.0005			
08/30/97	7 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
	8 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	8 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
03/18/99	9 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	9 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
03/28/2000	0 Mercury, dissolved	0.002	0.0005	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	0 Mercury, dissolved	0.002	0.0005	NT	< 0.0005	< 0.0005	NT	NT	NT	NT	NT	NT	NT	< 0.0005	< 0.0005	<0.0005
09/28/2000	0 Mercury, dissolved	0.002	0.0005	NT	<0.0005	< 0.0005	< 0.0005	NT	NT	NT	NT	NT	DRY	< 0.0005	< 0.0005	< 0.0005
12/27/2000	0 Mercury, dissolved	0.002	0.0005	NT	< 0.0005	< 0.0005	NT	NT	NT	NT	NT	NT	NT	< 0.0005	<0.0005	<0.0005
03/28/2001	1 Mercury, dissolved	0.002	0.0005	NT	< 0.0005	< 0.0005	< 0.0005	NT	NT	NT	NT	NT	NT	< 0.0005	< 0.0005	<0.0005
09/02/2001	1 Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/19/2002	2 Mercury, dissolved	0.002	0.0005	NT	NT	NT	< 0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	2 Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/14/2003	3 Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	3 Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4 Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	4 Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	R ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	R ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR							ERR	ERR	ERR	ERR

		MEAN +			A	QUIFER W	ELLS							21.4	
TE PARAMETER	ACTION LEVEL	2 STD AW	U.A.W MW36	D.A.W MW 7	D.A.W MW 8	D.A.W MW 29	D.A.W MW 30	D.A.W MW 32	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.A.W MW 38	D.A.W MW 41	D.A.V MW 4
mg/L	LLYLL	7.11				mirr Lo									
4/23/91 Nitrogen, Ammonia		1.2				< 0.5	< 0.5	< 0.5	< 0.5	-	< 0.5				
0/15/91 Nitrogen, Ammonia		1.2				< 0.5	< 0.5	< 0.5	< 0.5		< 0.5				
1/23/92 Nitrogen, Ammonia		1.2					<1.0	<1.0	<1.0	<1.0	<1.0				
3/23/92 Nitrogen, Ammonia		1.2				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0				
9/30/92 Nitrogen, Ammonia		1.2				<1	<1	<1	<1	<1	<1				
3/05/93 Nitrogen, Ammonia		1.2					<1	<1	<1	1.7	<1				
9/21/93 Nitrogen, Ammonia		1.2				<1	<1	<1	<1	1.7	<1				
3/23/94 Nitrogen, Ammonia		1.2				<1	<1	<1	<1	1.8	1.1				
9/16/94 Nitrogen, Ammonia		1.2				<1	<1	<1	<1	1.8	1.3				
3/16/95 Nitrogen, Ammonia		1.2				<1	<1	<1	<1	1.6	1				
9/13/95 Nitrogen, Ammonia		1.2				<1	<1	<1	<1	1.5	1.2				
3/28/96 Nitrogen, Ammonia		1.2	1.2			<1	<1	<1	<1	1.4	1.8	<1			
		1.2	<1			NT	NT	NT	NT	NT	NT	<1			
6/20/96 Nitrogen, Ammonia	-	1.2	<1			<1	<1	<1	<1	1.6	1.4	<1			
9/13/96 Nitrogen, Ammonia			<1			<1	<1	<1	<1	1.5	<1	<1			
3/19/97 Nitrogen, Ammonia	S	1.2				<1	NT	NT	NT	NT	NT	<1			
6/18/97 Nitrogen, Ammonia		1.2	<1									<1			
8/30/97 Nitrogen, Ammonia		1.2	<1			<1	<1	<1	<1	1.4	1.4				
3/10/98 Nitrogen, Ammonia		1.2	<1			<1	<1	<1	<1	1.4	1.4	<1			
9/21/98 Nitrogen, Ammonia	0,000	1.2	<1			<1	<1	<1	<1	1.4	1.4	<1			
3/18/99 Nitrogen, Ammonia		1.2	<1			<1	<1	<1	<1	1.4	<1	<1			
9/21/99 Nitrogen, Ammonia	-	1.2	<1			<1	<1	<1	<1	1.5	<1	<1			
21/2000 Nitrogen, Ammonia		1.2	NT			<1	<1	<1	<1	1.6	<1	NT			
28/2000 Nitrogen, Ammonia		1.2	NT	<1	1.13	NT	NT	NT	NT	NT	NT	NT	1.08	<1	<1
28/2000 Nitrogen, Ammonia		1.2	<1	<1	1.1	<1	<1	<1	<1	1.35	<1	DRY	<1	<1	<1
27/2000 Nitrogen, Ammonia	-	1.2	NT	<1	1.08	NT									<1
28/2001 Nitrogen, Ammonia		1.2	<1	<1	1.1	<1	<1	<1	<1						<1
02/2001 Nitrogen, Ammonia		1.2	<1	<1	1.3	<1	<1	<1	<1		<1	<1	5		<1
19/2002 Nitrogen, Ammonia		1.2	<1	<1	1.1	<1	<1	<1	<1	2.2	<1	<1	<1	<1	<1
		1.2	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<	<1
		1.2	<1	<1	<1	<1	<1	1.1	<1	1.4	<1	<1	<1	<	<1
			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	1.2	<1.0	<1.0	<1.0	<1
			<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	2	<1.0	<1.0	<1.0	<1.0	<1
				<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.2	1	<1.0	<1.0	<1.0	<1.
28/2001 Nitrogen, Ammonia		-	- 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2 - 1.2	- 1.2 <1 - 1.2 <1 - 1.2 <1 - 1.2 <1 - 1.2 <1 - 1.2 <1 - 1.2 <1 - 1.2 <1 - 1.2 <1.0 - 1.2 <1.0	- 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1 <1 - 1.2 <1.0 <1.0 - 1.2 <1.0 <1.0	- 1.2 <1 <1 1.1 - 1.2 <1 <1 1.3 - 1.2 <1 <1 1.1 - 1.2 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 - 1.2 <1.0 <1.0 <1.0 - 1.2 <1.0 <1.0 1.3	- 1.2 <1 <1 1.1 <1 - 1.2 <1 <1 1.3 <1 - 1.2 <1 <1 1.1 <1 - 1.2 <1 <1 1.1 <1 - 1.2 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 - 1.2 <1.0 <1.0 <1.0 <1.0 - 1.2 <1.0 <1.0 <1.0 <1.0	- 1.2 <1 <1 1.1 <1 <1 <1 - 1.2 <1 <1 1.3 <1 <1 - 1.2 <1 <1 1.1 <1 <1 - 1.2 <1 <1 1.1 <1 <1 - 1.2 <1 <1 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 <1 <1 <1 - 1.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 - 1.2 <1.0 <1.0 1.3 <1.0 <1.0	- 1.2 <1 <1 1.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 1.2 <1 <1 1.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 1.2 <1 <1 1.1 <1 <1 <1 <1 1.8 - 1.2 <1 <1 1.3 <1 <1 <1 <1 <1 1.6 - 1.2 <1 <1 1.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 - 1.2 <1 <1 <1 1.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 1.2 <1 <1 1.1 <1 <1 <1 <1 1.8 <1 - 1.2 <1 <1 1.3 <1 <1 <1 <1 <1 <1 1.6 <1 - 1.2 <1 <1 1.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 - 1.2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 1.2 <1 <1 1.1 <1 <1 <1 <1 1.8 <1 <1 <1 - 1.2 <1 <1 1.3 <1 <1 <1 <1 <1 <1 1.6 <1 <1 - 1.2 <1 <1 1.1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 1.2 <1 <1 1.1 <1 <1 <1 <1 1.8 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	- 1.2 <1 <1 1.1 <1 <1 <1 <1 1.8 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
monia		1.2	<1.0	<1.0	1.3	<1.0	<1.0	<1.0	<1.0	2	<1.0	<1.	.0	.0 <1.0	.0 <1.0 <1.0
Mean			1.2	ERR	1.158571	ERR	ERR	1.1	ERR	1.628261	1.290909	ERR	1.08		ERR
Standard Deviation (STD)			0	ERR	0.090464	ERR	ERR	0	ERR	0.240844	0.219315	ERR	0	ERR	
Mean + 2 STD			1.2	ERR	1.339499	ERR	ERR	1.1	ERR	2.109948	1.72954	ERR	1.08	ERR	
			1.2		ERR	ERR 1.339499	ERR 1.339499 ERR	ERR 1.339499 ERR ERR	ERR 1.339499 ERR ERR 1.1	ERR 1.339499 ERR ERR 1.1 ERR	ERR 1.339499 ERR ERR 1.1 ERR 2.109948	ERR 1.339499 ERR ERR 1.1 ERR 2.109948 1.72954	ERR 1.339499 ERR ERR 1.1 ERR 2.109948 1.72954 ERR	ERR 1.339499 ERR ERR 1.1 ERR 2.109948 1.72954 ERR 1.08	

			MEAN +			1	QUIFER W	/ELLS								
DATE	PARAMETER	ACTION LEVEL	2 STD AW	U.A.W MW36	D.A.W MW 7	D.A.W MW 8	D.A.W MW 29	D.A.W MW 30	D.A.W MW 32	BOTH MW 25	BOTH MW 33	BOTH MW 34	BOTH MW35	D.A.W MW 38	D.A.W MW 41	D.A.W MW 42
04/23/91 pH			8.383962				7.80	7.51	7.18	7.55		7.01				
10/15/91 pH			8.383962				6.96	7.54	7.21	7.60	Service.	7.03				
01/23/92 pH			8.383962					7.65	7.58	7.27	7.26	7.31				
03/23/92 pH			8.383962				7.68	7.50	7.27	7.39	7.37	7.32				
09/30/92 pH			8.383962				7.36	7.49	7.44	7.31	7.3	7.13				
03/05/93 pH			8.383962					7.28	7.41	7.41	7.42	7.34				
09/21/93 pH			8.383962				7.1	7.11	7.3	6.85	7.29	7.12				
03/23/94 pH			8.383962				7.1	7.24	7.33	7.16	7.18	7.4				
09/16/94 pH			8.383962				6.95	6.42		6.46	7.22	6.99				
03/16/95 pH			8.383962				6.7	7.9	7.9	7.7	7.6	7.7				
09/13/95 pH			8.383962				7.1	7.7	7.4	7.6	7.6	7.6				
03/28/96 pH			8.383962	8			8.2	8.2	8.1	7.9	7.9	8	8			
06/20/96 pH			8.383962	7			NT	NT	NT	NT	NT	NT	7.5			
09/13/96 pH			8.383962	8.3			8.3	7.9	7.7	7.7	7.7	8	8.1			
03/19/97 pH			8.383962	8.2			7.7	8.2	7.6	7.5	7.5	7.7	8.1			
06/18/97 pH			8.383962	8.2			7.8	NT	NT	NT	NT	NT	8.2			
08/30/97 pH			8.383962	7.7			7.8	7.6	8.1	7.8	7.9	8	8			
03/10/98 pH			8.383962	7.8			7.8	7.4	7.8	6.4	5.8	5.8	5.4			
09/21/98 pH			8.383962	7.2			7.2	7.4	7	6.2	5.8	7.4	7.4			
03/18/99 pH			8.383962	7.4			7.8	7.6	7.5	7.3	7.4	7.7	6.9			
09/21/99 pH			8.383962	7.2			7.2	7.4	7	6.2	5.8	7.4	7.4			
3/21/2000 pH			8.383962	NT			NT	NT	NT	NT	NT	NT	NT			
6/28/2000 pH			8.383962	NT	7.3	7.1	NT	NT	NT	NT	NT	NT	NT	6.3	6.2	
9/28/2000 pH			8.383962	7.5	7.3	7.3	7.1	7.3	7.1	7.2	7.3	7.2	NT	7.3	7.3	7
2/27/2000 pH			8.383962	NT	8.5	8.5	NT	NT	NT	NT	NT	NT	NT	7.9	8.3	7.7
3/28/2001 pH			8.383962	7.5	7.9	7.5	7.4	8.2	7.7	7.5	7.4	7.5	7.5	7.1	7.7	8.1
9/02/2001 pH			8.383962	7.5	7.4	7.7	NT	7.4	7.5	7.7	7.8	7.3	7.3	7.6	7.5	8.1
3/19/2002 pH			8.383962	NT	7.2	7.1	7.2	NT	NT	7	7.2	7	7.1	7.2	7.4	7.3
9/19/2002 pH			8.383962	7.8	7.1	6.9	7.7	7.1	7.2	7.5	7	6.7	6.9	6.8	7.3	7.2
3/14/2003 pH			8.383962	7.6	7	7.1	7	8	7.3	7.1	7.4	7.3	7.1	8	7.8	8
9/29/2003 pH			8.383962	7.8	7.4	7.4	7.7	7.7	7.5	7.4	7.8	7.4	7.5	7.8	7.7	7.5
3/08/2004 pH			8.383962	7	7.1	7.7	7.5	6.8	7	7.6	7.4	7.4	7.4	7.1	7	7.7
9/27/2004 pH			8.383962	7.5	7.8	7.6	7.7	7.5	7	7	7.1	7.2	7.2	7.3	7.7	7.5

			MEAN +				AQUIFER W	ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	_ MW_34	MW35	MW 38	MW 41	MW 42
	mg/L															
04/23/91	Phenois		0.1				<0.1	<0.1	<0.1	<0.1		<0.1				
10/15/91	Phenois		0.1				<0.1	0.1	<0.1	<0.1		<0.1				
01/23/92	Phenois		0.1					<0.1	<0.1	<0.1	<0.1	<0.1				
03/23/92	Phenois		0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
09/30/92	Phenois		0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/05/93	Phenois		0.1				NT	NT	NT	NT	NT	NT				
09/21/93	Phenois		0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/23/94	PhenoIs		0.1				NT	NT	NT .	NT	NT	NT				
09/16/94	PhenoIs		0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
03/16/95	Phenois		0.1				<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				
09/13/95	Phenois		0.1				NT	NT	NT	NT	NT	NT				
03/28/96	Phenols		0.1	NT			<0.1	NT	NT	NT	NT	NT	NT			
06/20/96	Phenois		0.1	NT			NT	NT	NT	NT	NT	NT	NT			
09/13/96	Phenols		0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/19/97	Phenois		0.1	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Phenols		0.1	NT			NT	NT	NT	NT	NT	NT	NT			
08/30/97	Phenois		0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/10/98	Phenois		0.1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Phenols		0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/18/99	Phenois		0.1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Phenois		0.1	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			
03/21/2000	Phenois		0.1	NT			NT	NT	NT	NT	NT	NT	NT			
06/28/2000	Phenois		0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/28/2000	Phenois		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	DRY	<0.1	<0.1	<0.1
12/27/2000	Phenois		0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/28/2001	Phenois		0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NŤ	NT	NT	NT
09/02/2001	Phenois		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
03/19/2002	Phenois		0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002	Phenois		0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
03/14/2003	Phenois		0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/29/2003	Phenols		0.1	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	NT
03/08/2004	Phenols		0.1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Phenols		0.1	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
	Mean			ERR	ERR	ERR	ERR	0.1	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	0	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ER
	Mean + 2 STD			ERR	ERR	ERR	ERR	0.1	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERI

PARAMETER a, celsius		2 STD AW 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786	U.A.W MW36	D.A.W MW 7	D.A.W MW 8	D.A.W MW 29 12.7 11.9 10.5 12.1 14.6 8.2 17.1	D.A.W MW 30 11.6 11.3 8.5 13.2 11.3 9.8 13.1 10.7	D.A.W MW 32 11.3 11.0 8.4 11.8 11 9.2 10.4 12.1	BOTH MW 25 15.1 14.6 8.3 7.2 10.7 6.9 14.6 9.4	BOTH MW 33 8.3 7.3 10.7 6.9 14.7 11.7	BOTH MW 34 12.4 16.2 6.2 6.5 10.1 6.1 14.8 12	BOTH MW35	D.A.W MW 38	D.A.W MW 41	D.A.V MW 4
e, celsius e, celsius		16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786		MW 7	MW 8	12.7 11.9 10.5 12.1 14.6 8.2	11.6 11.3 8.5 13.2 11.3 9.8 13.1 10.7	11.3 11.0 8.4 11.8 11 9.2 10.4	15.1 14.6 8.3 7.2 10.7 6.9 14.6	8.3 7.3 10.7 6.9 14.7	12.4 16.2 6.2 6.5 10.1 6.1 14.8	MW35	MW 38	MVV 41	MVV 2
celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius	-	16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				11.9 10.5 12.1 14.6 8.2	11.3 8.5 13.2 11.3 9.8 13.1 10.7	11.0 8.4 11.8 11 9.2 10.4	14.6 8.3 7.2 10.7 6.9 14.6	8.3 7.3 10.7 6.9 14.7	16.2 6.2 6.5 10.1 6.1 14.8				
celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius		16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				10.5 12.1 14.6 8.2	8.5 13.2 11.3 9.8 13.1 10.7	8.4 11.8 11 9.2 10.4	8.3 7.2 10.7 6.9 14.6	8.3 7.3 10.7 6.9 14.7	6.2 6.5 10.1 6.1 14.8				
celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius celsius		16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				10.5 12.1 14.6 8.2	13.2 11.3 9.8 13.1 10.7	11.8 11 9.2 10.4	7.2 10.7 6.9 14.6	7.3 10.7 6.9 14.7	6.5 10.1 6.1 14.8				
e, celsius e, celsius	-	16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				12.1 14.6 8.2	11.3 9.8 13.1 10.7	11 9.2 10.4	10.7 6.9 14.6	10.7 6.9 14.7	10.1 6.1 14.8				
e, celsius e, celsius	= = = = = = = = = = = = = = = = = = = =	16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				14.6 8.2	9.8 13.1 10.7	9.2 10.4	6.9 14.6	6.9 14.7	6.1 14.8				
e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius	-	16.10786 16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				14.6 8.2	13.1 10.7	10.4	14.6	14.7	14.8				
e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius	- - - - -	16.10786 16.10786 16.10786 16.10786 16.10786 16.10786				8.2	10.7								
d, celsius d, celsius d, celsius d, celsius d, celsius d, celsius d, celsius d, celsius	- - - -	16.10786 16.10786 16.10786 16.10786 16.10786						12.1	9.4	11.7	12				
e, celsius e, celsius e, celsius e, celsius e, celsius e, celsius	= =	16.10786 16.10786 16.10786 16.10786				17.1									
e, celsius e, celsius e, celsius e, celsius e, celsius	= =	16.10786 16.10786 16.10786					15.5		19.9	18.5	2.11				
e, celsius e, celsius e, celsius e, celsius		16.10786 16.10786				6	10	8	7	7	6				
e, celsius e, celsius e, celsius	-	16.10786				4.62	4.05	3.88	4.63	4.24	4.66				
e, celsius e, celsius			10			7	10	11	7	7	7	6			
e, celsius		16.10786	14			NT	NT	NT	NT	NT	NT	13			
		16.10786	12			16	14	13	15	16	16	16			
		16.10786	10			8	13	12	6	7	6	6			
e, celsius		16.10786	13			14	NT	NT	NT	NT	NT	12			
e, celsius		16.10786	14			17	15	24	19	20	21	17			
							10	10	10	9	9	9			
								11	17	18	17	15			
								11	9	8	9	9			
								11	17	18	17	15			
									NT	NT	NT	NT			
				NT	NT				NT	NT	NT	NT	NT	NT	1
										1000	17	NT	15	16	1
												NT	12	11	1
											1000	7	11	10	1
													13	15	1
											0.0		11	9	1
				7.7										16	1
												10	14	13	1
					100							100	14	13	1
			1		100	0.000								10	1
						07,000			_			16	16	16	1
	celsius	a, celsius				16.10786	14 14 15 15 16 1786 17 18 18 19 19 19 19 19 19	16.10786	16.10786	16.10786	16.10786 11	16.10786 11	16.10786 10 14 10 11 17 18 17 15 15 15 16 11 17 18 17 15 15 15 16 17 17 18 17 17 18 17 15 18 17 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 15 18 17 15 18 18 18 18 18 18 18 18 18 18 18 18 18	16.10786 11 14 10 11 17 18 17 15 15 15 15 15 15 15 15 15 15 15 15 15	16.10786 11 14 10 11 17 18 17 15 15 16 16.10786 11 14 10 11 17 18 17 15 16 16.10786 11 17 18 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 17 17 18 18 17 18 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18

			MEAN +				AQUIFER W									16.2
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	BOTH	BOTH	BOTH	ВОТН	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	8 WM	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	mg/L															
	Total Organic Halogens		0.01				0.16	0.05	0.01	0.033		0.05				
	Total Organic Halogens		0.01				< 0.01	< 0.01	< 0.01	<0.01		< 0.01				
	Total Organic Halogens		0.01					< 0.01	< 0.01	< 0.01	< 0.01	< 0.01				
03/23/92	Total Organic Halogens		0.01				< 0.01	< 0.01	< 0.01	0.92	0.99	0.01				
	Total Organic Halogens		0.01				< 0.01	< 0.01	< 0.01	0.02	<0.01	0.01				
	Total Organic Halogens		0.01				NT	NT	NT	NT	NT	NT				
09/21/93	Total Organic Halogens		0.01				0.01	0.01	0.01	0.02	0.05	0.02				
03/23/94	Total Organic Halogens		0.01				NT	NT	NT	NT	NT	NT				
09/16/94	Total Organic Halogens		0.01				< 0.01	< 0.01	0.014	0.024	0.024	< 0.01				
03/16/95	Total Organic Halogens		0.01				< 0.01	< 0.01	< 0.01	0.02	0.04	0.02				
09/13/95	Total Organic Halogens		0.01				NT	NT	NT	NT	NT	NT				
03/28/96	Total Organic Halogens		0.01	NT			< 0.01	NT	NT	NT	NT	NT	NT			
06/20/96	Total Organic Halogens		0.01	NT			NT	NT	NT	NT	NT	NT	NT			
09/13/96	Total Organic Halogens		0.01	0.01			0.01	< 0.01	0.01	0.02	0.01	0.01	0.03			
03/19/97	Total Organic Halogens		0.01	NT			NT	NT	NT	NT	NT	NT	NT			
06/18/97	Total Organic Halogens		0.01	NT			NT	NT	NT	NT	NT	NT	NT			
08/30/97	Total Organic Halogens		0.01	< 0.01			< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
	Total Organic Halogens		0.01	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	Total Organic Halogens		0.01	< 0.01			< 0.01	< 0.01	< 0.01	0.02	0.02	< 0.01	0.03			
	Total Organic Halogens		0.01	NT			NT	NT	NT	NT	NT	NT	NT			
	Total Organic Halogens		0.01	< 0.01			< 0.01	< 0.01	< 0.01	0.02	0.02	0.01	0.02			
	Total Organic Halogens		0.01	NT			NT	NT	NT	NT	NT	NT	NT			
	Total Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens		0.01	< 0.01	0.02	0.02	0.02	< 0.01	0.01	0.02	0.02	0.02	DRY	< 0.01	< 0.01	0.02
	Total Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens		0.01	<0.01	<0.01	< 0.01	< 0.01	0.013	0.02	0.065	0.021	0.03	0.028	< 0.01	< 0.01	0.011
	Total Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens		0.01	< 0.01	<0.01	0.124	< 0.01	0.015	0.077	0.019	0.02	0.021	0.034	< 0.01	< 0.01	0.014
	Total Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens		0.01	< 0.010	< 0.010	< 0.010	< 0.010	<0.010	< 0.010	< 0.010	< 0.010	0.012	< 0.010	< 0.010	< 0.010	NT
	Total Organic Halogens		0.01	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Total Organic Halogens		0.01	< 0.010	0.013	< 0.010	0.014	< 0.010	0.01	0.034	0.034	0.012	0.029	0.015	< 0.010	0.012
09/21/2004	Total Organic Halogens		0.01	V0.010	0.013	<0.010	0.014	40.010	0.01	0.004	0.004	0.012	0.020	0.010	0.010	0.012
	Mean			0.01	0.0165	0.072	0.0428	0.026	0.020125	0.095	0.113545	0.01875	0.0285	0.015	ERR	0.014
	Standard Deviation (STD)			0	0.0035	0.052	0.058714	0.01699	0.021751	0.23847	0.277367	0.011218	0.004233	0	ERR	0.0034
	Mean + 2 STD			0.01	0.0235	0.176	0.160228	0.05998	0.063627	0.57194	0.668279	0.041187	0.036966	0.015	ERR	0.0212

			MEAN +				AQUIFER W	ELLS								
		ACTION	2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	вотн	BOTH	BOTH	D.A.W	D.A.W	D.A.W
DATE	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
	ug/L															
04/23/91	Trichloroethene *	5	1				<1	<1	<1	<1		<1				
10/15/91	Trichloroethene *	5	1				<1	<1	<1	<1		<1				
01/23/92	? Trichloroethene *	5	1					<1	<1	<1	<1	<1				
03/23/92	? Trichloroethene *	5	1				<1	<1	<1	<1	<1	<1				
09/30/92	? Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/05/93	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
09/21/93	3 Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/23/94	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
09/16/94	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/16/95	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
09/13/95	Trichloroethene *	5	1				NT	NT	NT	NT	NT	NT				
03/28/96	Trichloroethene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
06/20/96	Trichloroethene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
09/13/96	Trichloroethene *	5	1	<1			NT	NT	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	<1			<1	NT	NT	NT	NT	NT	<1			
	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
03/10/98	3 Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/98	3 Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
09/21/99	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
	Trichloroethene *	5	1	NT			NT	NT	NT	NT	NT	NT	NT			
*	Trichloroethene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	Trichloroethene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	DRY	<1	<1	<1
	Trichloroethene *	5	1	NT	<1	<1	NT	NT	NT	NT	NT	NT	NT	<1	<1	<1
	Trichloroethene *	5	1	NT	<1	<1	<1	NT	NT	NT	NT	NT	NT	<1	<1	<1
	Trichloroethene *	5	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2 Trichloroethene *	5	1	NT	NT	NT	<1	NT	NT	NT	NT	NT	NT	NT	NT	NT
	2 Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3 Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	3 Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004	Trichloroethene *	5	1	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	_	ERR	ERR	
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR	ERR		ERR	ERR	

DATE		ACTION		The Control of the Co												
DATE			2 STD	U.A.W	D.A.W	D.A.W	D.A.W	D.A.W	D.A.W	вотн	BOTH	BOTH	вотн	D.A.W	D.A.W	D.A.W
	PARAMETER	LEVEL	AW	MW36	MW 7	MW 8	MW 29	MW 30	MW 32	MW 25	MW 33	MW 34	MW35	MW 38	MW 41	MW 42
1 STUDENS (15 22	mg/L							-0.00	-0.00	-0.00		-0.00				
The state of the s	Zinc, dissolved	2	0.05				< 0.03	< 0.03	< 0.03	< 0.03		< 0.03				
	Zinc, dissolved	2	0.05				< 0.03	< 0.03	< 0.03	< 0.03	<0.03	< 0.03				
	Zinc, dissolved	2	0.05				-0.00	< 0.03	< 0.03	< 0.03	<0.03	< 0.03				
	Zinc, dissolved	2	0.05				<0.03	<0.03	<0.03	<0.03	VU.03	<0.03 NT				
	Zinc, dissolved	2	0.05				NT NT	NT NT	NT NT	NT	NT	NT				
	Zinc, dissolved	2	0.05					NT	NT	NT	NT	NT				
	Zinc, dissolved	2	0.05				NT NT	NT	NT	NT	NT	NT				
	Zinc, dissolved	2	0.05				NT	NT	NT	NT	NT	NT				
	Zinc, dissolved	2	0.05				NT	NT	NT	NT	NT	NT				
	Zinc, dissolved	2					NT	NT	NT	NT	NT	NT				
	Zinc, dissolved	2	0.05	< 0.03			NT	NT	NT	NT	NT	NT	< 0.03			
	Zinc, dissolved Zinc, dissolved	2	0.05	<0.03			NT	NT	NT	NT	NT	NT	0.047			
	Zinc, dissolved Zinc, dissolved	2	0.05	0.05			NT	NT	NT	NT	NT	NT	0.047			
	Zinc, dissolved Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	<0.03			< 0.03	NT	NT	NT	NT	NT	< 0.03			
	Zinc, dissolved Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	NT			NT	NT	NT	NT	NT	NT	NT			
	Zinc, dissolved	2	0.05	NT	< 0.03	< 0.03	NT	NT	NT	NT	NT	NT	NT	< 0.03	< 0.03	< 0.03
	Zinc, dissolved	2	0.05	NT	< 0.03	< 0.03	< 0.03	NT	NT	NT	NT	NT	DRY	< 0.03	0.035	< 0.03
	Zinc, dissolved	2	0.05	NT	0.043	0.035	NT	NT	NT	NT	NT	NT	NT	0.032	0.081	0.036
	Zinc, dissolved	2	0.05	NT	0.038	0.052	0.095	NT	NT	NT	NT	NT	NT	< 0.03	0.03	< 0.03
	Zinc, dissolved	2	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Zinc, dissolved	2	0.05	NT	NT	NT	1.45	NT	NT	NT	NT	NT	NT	NT	NT	NT
				NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
		2	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
	Zinc, dissolved	2	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
03/08/2004 2	Zinc, dissolved	2	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/27/2004 2	Zinc, dissolved	2	0.05	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT	NT
09/19/2002 2 03/14/2004 2 09/29/2003 2 03/08/2004 2	Zinc, dissolved Zinc, dissolved Zinc, dissolved Zinc, dissolved		2 2 2 2	2 0.05 2 0.05 2 0.05 2 0.05 2 0.05	2 0.05 NT 2 0.05 NT 2 0.05 NT 2 0.05 NT	2 0.05 NT NT 2 0.05 NT NT 2 0.05 NT NT 2 0.05 NT NT	2 0.05 NT NT NT 2 0.05 NT NT NT 2 0.05 NT NT NT 2 0.05 NT NT NT	2 0.05 NT NT NT NT NT	2 0.05 NT NT NT NT NT NT 2 0.05 NT NT NT NT NT NT NT 2 0.05 NT NT NT NT NT NT NT 2 0.05 NT	2 0.05 NT NT NT NT NT NT NT 2 0.05 NT 2 0.05 NT	2 0.05 NT NT NT NT NT NT NT NT 2 0.05 NT NT NT NT NT NT NT NT NT 2 0.05 NT	2 0.05 NT NT NT NT NT NT NT NT NT 1 NT 1 NT 1	2 0.05 NT 2 0.05 NT	2 0.05 NT 2 0.05 NT	2 0.05 NT	2 0.05 NT
5	Mean Standard Deviation (STD) Mean + 2 STD			0.05 0 0.05	0.0405 0.0025 0.0455	0.0435 0.0085 0.0605	0.7725 0.6775 2.1275	ERR ERR ERR	ERR ERR ERR	ERR ERR ERR	ERR ERR ERR	ERR ERR ERR	0.0445 0.0025 0.0495	0.032 0 0.032	0.048667 0.022954 0.094575	0

ATTACHMENT E Concentration Versus Time Tables & Graphs Surface Water System

			MEAN +	SURFACE M	ONITORING	PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L			-					
04/23/91	1,1-Dichloroethene *	7	1	<1	<1	<1			
	1,1-Dichloroethene *	7	1	<1	<1	<1			
01/23/92	1,1-Dichloroethene *	7	1	<1	<1	<1			
03/23/92	1,1-Dichloroethene *	7	1	<1	<1	<1			
	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/05/93	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/21/93	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/23/94	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/16/94	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/16/95	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/13/95	1,1-Dichloroethene *	7	1	NT	NT	NT			
03/28/96	1,1-Dichloroethene *	7	1	NT	NT	NT			
06/20/96	1,1-Dichloroethene *	7	1	NT	NT	NT			
09/13/96	1,1-Dichloroethene *	7	1	NT	NT	DRY			
03/19/97	1,1-Dichloroethene *	7	1	NT	NT	DRY			
06/18/97	1,1-Dichloroethene *	7	1	NT	NT	NT			
08/30/97	1,1-Dichloroethene *	7	1	NT	NT	DRY			
03/10/98	1,1-Dichloroethene *	7	1	NT	NT	DRY ·			
09/21/98	1,1-Dichloroethene *	7	1	NT	NT	DRY			
03/19/99	1,1-Dichloroethene *	7	1	NT	NT	DRY			
09/21/99	1,1-Dichloroethene *	7	1	NT	NT	DRY			
03/21/2000	1,1-Dichloroethene *	7	1	NT	NT	DRY			
06/28/2000	1,1-Dichloroethene *	7	1	NT	NT	DRY	<1	DRY	<1
09/28/2000	1,1-Dichloroethene *	7	1	NT	NT	DRY	DRY	DRY	<1
	1,1-Dichloroethene *	7	1	NT	NT	NT	DRY	DRY	<1
03/28/2001	1,1-Dichloroethene *	7	1	NT	NT	DRY	<1	DRY	DRY
	1,1-Dichloroethene *	7	1	NT	NT	DRY	NT	DRY	DRY
	1,1-Dichloroethene *	7	1	NT	NT	DRY	<1	DRY	<1
	1,1-Dichloroethene *	7	1	NT	NT	DRY	<1	<1	NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	NT	<1	NT
	1,1-Dichloroethene *	7	1	NT	NT	DRY	DRY	DRY	NT
	1,1-Dichloroethene *	7		NT	NT	DRY	NT	<1	NT
09/27/2004	1,1-Dichloroethene *	7	1	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

		<u> </u>		SURFACE M	ONITORING	PTS.			
	DADAMETED	ACTION	2 STD	CW 4	CMA	CIAL 2	CIMA	SW 5	SW 6
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW4	300 3	344.0
	ug/L								
04/23/91	1,1,1-Trichloroethane *	200	1	<1	<1	<1			
	1,1,1-Trichloroethane *	200	1	<1	<1	<1			
01/23/92	1,1,1-Trichloroethane *	200	1	<1	<1	<1			
	1,1,1-Trichloroethane *	200	1	<1	<1	<1			
09/30/92	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
03/05/93	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
09/21/93	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
03/23/94	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
09/16/94	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
09/13/95	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
03/28/96	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
06/20/96	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
09/13/96	1,1,1-Trichloroethane *	200	1	NT	NT	Dry			
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
06/18/97	1,1,1-Trichloroethane *	200	1	NT	NT	NT			
08/30/97	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
03/10/98	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
09/21/98	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
09/21/99	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
03/21/2000	1,1,1-Trichloroethane *	200	1	NT	NT	DRY			
06/28/2000	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	<1	DRY	<1
09/28/2000	1,1,1-Trichloroethane *	200	1	NT	NT	DRY	DRY	DRY	<1
12/27/2000	1,1,1-Trichloroethane *	200	1	NT	NT	NT	DRY	DRY	<1
03/28/2001	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	<1	DRY	DRY
09/02/2001	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	NT	DRY	DRY
03/19/2002	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	<1	DRY	<1
09/19/2002	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	<1	<1	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	NT	<1	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	DRY	DRY	NT
	1,1,1-Trichloroethane *	200	1	NT	NT	Dry	NT	<1	NT
09/27/2004	1,1,1-Trichloroethane *	200	1	NT	ΝT	Dry	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +	SURFACE N	ONITORING	PTS.			
		ACTION	2 STD						
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L								
04/23/91	1,2-Dichloroethane *	5	1	<1	<1	<1			
	1,2-Dichloroethane *	5	1	<1	<1	<1			
	1,2-Dichloroethane *	5	1	<1	<1	<1			
03/23/92	1,2-Dichloroethane *	5	1	<1	<1	<1			
09/30/92	1,2-Dichloroethane *	5	1	NT	NT	NT			
03/05/93	1,2-Dichloroethane *	5	1	NT	NT	NT			
09/21/93	1,2-Dichloroethane *	5	1	NT	NT	NT			
03/23/94	1,2-Dichloroethane *	5	1	NT	NT	NT			
09/16/94	1,2-Dichloroethane *	5	1	NT	NT	NT			
03/16/95	1,2-Dichloroethane *	5	1	NT	NT	NT			
09/13/95	1,2-Dichloroethane *	5	1	NT	NΤ	NT			
03/28/96	1,2-Dichloroethane *	5	1	NT	NT	NT			
06/20/96	1,2-Dichloroethane *	5	1	NT	NT	NT			
09/13/96	1,2-Dichloroethane *	5	1	NT	NT	DRY			
03/19/97	1,2-Dichloroethane *	5	1	NT	NT	DRY			
06/18/97	1,2-Dichloroethane *	5	1	NT	NT	NT			
08/30/97	1,2-Dichloroethane *	5	1	NT	NT	DRY			
03/10/98	1,2-Dichloroethane *	5	1	NT	NT	DRY			
09/21/98	1,2-Dichloroethane *	5	1	NT	NT	DRY			
03/18/99	1,2-Dichloroethane *	5	1	NT	NT	DRY			
03/21/99	1,2-Dichloroethane *	5	1	NT	NT	DRY			
03/21/2000	1,2-Dichloroethane *	5	1	NT	NT	DRY			
06/28/2000	1,2-Dichloroethane *	5	1	NT	NT	DRY	<0.4	DRY	<0.4
09/28/2000	1,2-Dichloroethane *	5	1	NT	NT	DRY	DRY	DRY	<0.4
12/27/2000	1,2-Dichloroethane *	5	1	NT	NT	NT	DRY	DRY	<0.4
03/28/2001	1,2-Dichloroethane *	5	1	NT	NT	DRY	<0.4	DRY	DRY
09/02/2001	1,2-Dichloroethane *	5	1	NT	NT	NT	NT	DRY	DRY
03/19/2002	1,2-Dichloroethane *	5	1	NT	NT	DRY	<0.4	DRY	<0.4
09/19/2002	1,2-Dichloroethane *	5	1	NT	NT	DRY	<0.4	<0.4	NT
03/14/2003	1,2-Dichloroethane *	5	1	NT	NT	DRY	NT	<0.4	NT
09/29/2003	1,2-Dichloroethane *	5	1	NT	NT	DRY	DRY	DRY	NT
03/08/2004	1,2-Dichloroethane *	5	1	NT	NT	DRY	NT	<0.4	NT
09/27/2004	1,2-Dichloroethane *	5	1	NT	NT	DRY	DRY	DRY	NT
ł	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
ı	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

F -				SURFACE M	ONITORING	PTS.			
		ACTION	2 STD				G144 4	0144.5	0141.0
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L		_						
	1,4-Dichlorobenzene *	75	1	<1	<1	<1			
	1,4-Dichlorobenzene *	75	1	<1	<1	<1			
	1,4-Dichlorobenzene *	75	1	<1	<1	<1			
	1,4-Dichlorobenzene *	75	1	<1	<1	<1			
09/30/92	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
03/23/94	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
09/16/94	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
03/16/95	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
09/13/95	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
03/28/96	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
06/20/96	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
09/13/96	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
03/19/97	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
06/18/97	1,4-Dichlorobenzene *	75	1	NT	NT	NT			
08/30/97	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
03/10/98	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
09/21/98	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
03/18/99	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			
03/21/2000	1,4-Dichlorobenzene *	75	1	NT	NT	DRY			_
06/28/2000	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	<1	DRY	<1
09/28/2000	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	DRY	DRY	<1
12/27/2000	1,4-Dichlorobenzene *	75	1	NT	NT	NT	DRY	DRY	<1
03/28/2001	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	<1	DRY	DRY
09/02/2001	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	NT	DRY	DRY
03/19/2002	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	<1	DRY	<1
09/19/2002	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	<1	<1	NT
03/14/2003	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	NT	<1	NT
09/29/2003	1,4-Dichlorobenzene *	75	1		NT	DRY	DRY	DRY	NT
	1,4-Dichlorobenzene *	75	1		NT	DRY	NT	<1	NT
09/27/2004	1,4-Dichlorobenzene *	75	1	NT	NT	DRY	DRY	DRY	NT
				5 00	500	ED.	ERR	ERR	ERR
	Mean			ERR	ERR	ERR ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	EKK	EKK	EKK	ENK	LIM

			MEAN +	SURFACE	MONITORIN	IG PTS.			
		ACTION	2 STD	0144.4	0144.0	0111.0	0147.4	CIME	CWC
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
04100104	mg/L	0.05	0.005	-0.005	-0.005	-0.005			
04/23/91	Arsenic, dissolved	0.05	0.005		<0.005	<0.005			
10/15/91	Arsenic, dissolved	0.05	0.005		< 0.005	< 0.005			
01/23/92	Arsenic, dissolved	0.05	0.005	< 0.005	< 0.005	< 0.005			
03/23/92	Arsenic, dissolved	0.05	0.005	< 0.005	< 0.005	< 0.005			
09/30/92	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/05/93	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/21/93	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/23/94	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/16/94	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/16/95	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/13/95	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
03/28/96	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
06/20/96	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
09/13/96	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/19/97	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
06/18/97	Arsenic, dissolved	0.05	0.005	NT	NT	NT			
08/30/97	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/10/98	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
09/21/98	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/18/99	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
09/21/99	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
03/21/2000	Arsenic, dissolved	0.05	0.005	NT	NT	DRY			
06/28/2000	Arsenic, dissolved	0.05	0.005	NT	NT	DRY	0.006	DRY	0.01
09/28/2000	Arsenic, dissolved	0.05	0.005	NT	NT	DRY	DRY	DRY	0.014
12/27/2000	Arsenic, dissolved	0.05	0.005	NT	NT	NT	DRY	DRY	0.016
03/28/2001	Arsenic, dissolved	0.05	0.005	NT	NT	DRY	0.003	DRY	DRY
09/02/2001	Arsenic, dissolved	0.05	0.005	NT	NT	NT	NT	DRY	DRY
03/19/2002	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	0.001	DRY	0.012
09/19/2002	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	0.018	0.001	NT
03/14/2003	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	NT	0.004	NT
09/29/2003	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	NT	0.002	NT
09/27/2004	Arsenic, dissolved	0.01	0.005	NT	NT	DRY	DRY	DRY	NT
00/2//2004	Alberto, disserved	0.01	0.000			2			13.3.2
	Mean			ERF	R ERF	R ERR	0.007	0.0015	0.013
	Standard Deviation (STD)			ERF			0.006595	0.0005	0.002236
	Mean + 2 STD			ERF	R ERF	R ERR	0.020191	0.0025	0.017472

			MEAN +	SURFACE M	ONITORING	PTS.			
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
DAIL	mg/L		0						
04/23/91	Barium, dissolved	2.000	0.108	0.104	0.089	0.096			
10/15/91	Barium, dissolved	2.000	0.108	0.094	0.090	0.140			
01/23/92	Barium, dissolved	2.000	0.108	0.084	0.085	0.102			
03/23/92	Barium, dissolved	2.000	0.108	0.090	0.091	0.093			
09/30/92	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/05/93	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/21/93	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/23/94	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/16/94	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/16/95	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/13/95	Barium, dissolved	2.000	0.108	NT	NT	NT			
03/28/96	Barium, dissolved	2.000	0.108	NT	NT	NT			
06/20/96	Barium, dissolved	2.000	0.108	NT	NT	NT			
09/13/96	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/19/97	Barium, dissolved	2.000	0.108	NT	NT	DRY			
06/18/97	Barium, dissolved	2.000	0.108	NT	NT	NT			
08/30/97	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/10/98	Barium, dissolved	2.000	0.108	NT	NT	DRY			
09/21/98	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/18/99	Barium, dissolved	2.000	0.108	NT	NT	DRY			
09/21/99	Barium, dissolved	2.000	0.108	NT	NT	DRY			
03/21/2000	Barium, dissolved	2.000	0.108	NT	NT	DRY			
06/28/2000	Barium, dissolved	2.000	0.108	NT	NT	DRY	0.202	DRY	0.124
09/28/2000	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	0.136
12/27/2000	Barium, dissolved	2.000	0.108	NT	NT	NT	DRY	DRY	0.134
03/28/2001	Barium, dissolved	2.000	0.108	NT	NT	Dry	0.042	DRY	DRY
09/02/2001	Barium, dissolved	2.000	0.108	NT	NT	NT	NT	DRY	DRY
03/19/2002	Barium, dissolved	2.000	0.108	NT	NT	DRY	0.061	DRY	0.131
09/19/2002	Barium, dissolved	2.000	0.108	NT	NT	DRY	0.387	0.122	NT
03/14/2003	Barium, dissolved	2.000	0.108	NT	NT	DRY	NT	0.065	NT
09/29/2003	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Barium, dissolved	2.000	0.108	NT	NT	DRY	NT	0.096	NT
09/27/2004	Barium, dissolved	2.000	0.108	NT	NT	DRY	DRY	DRY	NT
	Mean			0.093	0.08875	0.10775	0.173	0.109	0.13125
	Standard Deviation (STD)			0.00728	0.002278	0.018899	0.13815	0.013	0.004548
	Mean + 2 STD			0.10756	0.093305	0.145549	0.449301	0.135	0.140347

Γ	T		MEAN +	SURFACE M	ONITORING	PTS			
		ACTION	2 STD	30111710211		71 10.	-		
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
DAIL	ug/L								
04/23/91	Benzene *	5	1	<1	<1	<1			
10/15/91	Benzene *	5	1	<1	<1	<1			
01/23/92	Benzene *	5	1	<1	<1	<1			
03/23/92	Benzene *	5	1	<1	<1	<1			
09/30/92	Benzene *	5	1	NT	NT	NT			
03/05/93	Benzene *	5	1	NT	NT	NT			
09/21/93	Benzene *	5	1	NT	NT	NT			
03/23/94	Benzene *	5	1	NT	NT	NT			
09/16/94	Benzene *	5	1	NT	NT	ΝΤ			
03/16/95	Benzene *	5	1	NT	NT	NT			
09/13/95	Benzene *	5	1	NT	NT	NT			
03/28/96	Benzene *	5	1	NT	NT	NT			
06/20/96	Benzene *	5	1	NT	NT	NT			
09/13/96	Benzene *	5	1	NT	NT	Dry			
03/19/97	Benzene *	5	1	NT	NT	DRY			
06/18/97	Benzene *	5	1	NT	NT	NT			
08/30/97	Benzene *	5	1	NT	NT	DRY			
03/10/98	Benzene *	5	1	NT	NT	DRY			
09/21/98	Benzene *	5	1	NT	NT	DRY			
03/18/99	Benzene *	5	1	NT	NT	DRY			
09/21/99	Benzene *	5	1	NT	NT	DRY			
03/21/2000	Benzene *	5	1	NT	NT	DRY			
06/28/2000	Benzene *	5	1	NT	NT	DRY	<1	DRY	<1
09/28/2000	Benzene *	5	1	NT	NT	DRY	DRY	NT	<1
12/27/2000	Benzene *	5	1	NT	NT	NT	DRY	DRY	<1
03/28/2001	Benzene *	5	1	NT	NT	Dry	<1	DRY	DRY
09/02/2001	Benzene *	5	1	NT	NT	NT	NT	DRY	DRY
03/19/2002	Benzene *	5	1	NT	NT	DRY	<1	NT	<1
09/19/2002	Benzene *	5	1	NT	NT	NT	<1	<1	NT
03/14/2003	Benzene *	5	1	NT	NT	NT	NT	<1	NT
09/29/2003	Benzene *	5	1	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Benzene *	5	1	NT	NT	DRY	NT	<1	NT
09/27/2004	Benzene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

	MEAN + SURFACE MONITORING PTS.								
		ACTION	2 STD	SON ACE	MONTOKIN	10110.			
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
DATE	mg/L	LEVEL	344	344 1	344.2	347 3	311 4	- 011 0	
04/23/91	Cadmium, dissolved	0.005	0.001	<0.001	<0.001	<0.001			
10/15/91	Cadmium, dissolved	0.005	0.001		0.001	<0.001			
	Cadmium, dissolved	0.005	0.001	<0.001	<0.001	<0.001			
01/23/92 03/23/92	Cadmium, dissolved	0.005	0.001	<0.001	<0.001	<0.001			
03/23/92	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/05/93	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/21/93	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/23/94	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/16/94	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/16/95		0.005	0.001	NT	NT	NT			
09/13/95	Cadmium, dissolved Cadmium, dissolved	0.005	0.001	NT	NT	NT			
03/28/96	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
06/20/96	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
09/13/96		0.005	0.001	NT	NT	DRY			
03/19/97	Cadmium, dissolved Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
06/18/97	Cadmium, dissolved	0.005	0.001	NT	NT	NT			
08/30/97	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
03/10/98	•	0.005	0.001	NT	NT	DRY			
03/10/98	Cadmium, dissolved Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
03/18/99	•	0.005	0.001	NT	NT	DRY			
09/21/99 03/21/2000	Cadmium, dissolved	0.005	0.001	NT	NT	DRY			
	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	<0.001	DRY	<0.001
06/28/2000	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	NT	NT	<0.001
09/28/2000 12/27/2000	Cadmium, dissolved Cadmium, dissolved	0.005	0.001	NT	NT	NT	DRY	DRY	<0.001
03/28/2001	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	<0.001	DRY	DRY
09/02/2001	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	DRY	DRY
03/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	NT	<0.001	NT.	<0.001
09/19/2002	Cadmium, dissolved	0.005	0.001	NT	NT	NT	<0.001	<0.001	NT
03/14/2003	Cadmium, dissolved	0.005	0.001	NT	NT	NT	NT	<0.001	NT
09/29/2003	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	NT	<0.001	NT
	Cadmium, dissolved	0.005	0.001	NT	NT	DRY	DRY	DRY	NT
09/27/2004	Cadmium, dissolved	0.005	0.001	NI	NI	DKI	DICI	DICI	14.7
	Mean			ERF			ERR ERR	ERR ERR	ERR ERR
	Standard Deviation (STD)			ERF			ERR	ERR	ERR
	Mean + 2 STD			ERF	R ERF	R ERR	EKK	EKK	EKK

Γ			MEAN + SURFACE MONITORING PTS.								
		ACTION	2 STD						0		
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6		
	ug/L	_	4			-4					
04/23/91	Carbon tetrachloride *	5	1	<1	<1	<1					
10/15/91	Carbon tetrachloride *	5	1	<1	<1	<1					
01/23/92	Carbon tetrachloride *	5	1	<1	<1	<1					
03/23/92	Carbon tetrachloride *	5]	<1 -	<1	<1 NT					
09/30/92	Carbon tetrachloride *	5	1	NT	NT	NT					
03/05/93	Carbon tetrachloride *	5	1	NT	NT	NT					
09/21/93	Carbon tetrachloride *	5	1	NT	NT	NT					
03/23/94	Carbon tetrachloride *	5	1	NT	NT	NT					
09/16/94	Carbon tetrachloride *	5	1	NT	NT	NT					
03/16/95	Carbon tetrachloride *	5	1	NT	NT	NT					
09/13/95	Carbon tetrachloride *	5	1	NT	NT	NT					
03/28/96	Carbon tetrachloride *	5	1	NT	NT	NT					
06/20/96	Carbon tetrachloride *	5	1	NT	NT	NT					
09/13/96	Carbon tetrachloride *	5	1	NT	NT	DRY					
03/19/97	Carbon tetrachloride *	5	1	NT	NT	DRY					
06/18/97	Carbon tetrachloride *	5	1	NT	NT	NT					
08/30/97	Carbon tetrachloride *	5	1	NT	NT	DRY					
03/10/98	Carbon tetrachloride *	5	1	NT	NT	DRY					
09/21/98	Carbon tetrachloride *	5	1	NT	NT	DRY					
03/18/99	Carbon tetrachloride *	5	1	NT	NT	DRY					
09/21/99	Carbon tetrachloride *	5	1	NT	NT	DRY					
03/21/2000	Carbon tetrachloride *	5	1	NT	NT	DRY					
06/28/2000	Carbon tetrachloride *	5	1	NT	NT	DRY	<0.3	DRY	<0.3		
09/28/2000	Carbon tetrachloride *	5	1	NT	NT	DRY	DRY	DRY	<0.3		
12/27/2000	Carbon tetrachloride *	5	1	NT	NT	NT	DRY	DRY	<0.3		
03/28/2001	Carbon tetrachloride *	5	1	NT	ΝT	DRY	<0.3	DRY	DRY		
09/02/2001	Carbon tetrachloride *	5	1	NT	NT	NT	NT	DRY	DRY		
03/19/2002	Carbon tetrachloride *	5	1	NT	NT	NT	<0.3	NT	<0.3		
09/19/2002	Carbon tetrachloride *	5	1	NT	NT	NT	<0.3	<0.3	NT		
03/14/2003	Carbon tetrachloride *	5	1	NT	NT	NT	NT	<0.3	NT		
09/29/2003	Carbon tetrachloride *	5	1	NT	NT	DRY	DRY	DRY	NT		
03/08/2004	Carbon tetrachloride *	5	1	NT	NT	DRY	NT	<0.3	NT		
09/27/2004	Carbon tetrachloride *	5	1	NT	NT	DRY	DRY	DRY	NT		
	Mean			ERR	ERR	ERR	ERR	ERR	ERR		
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR		
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR		

		MEAN + SURFACE MONITORING PTS.									
		ACTION	2 STD			2.0.2		0111.5	014/ 0		
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6		
	mg/L										
04/23/91	Chemical Oxygen Demand		44.8157	19.4	14.3	10.5					
10/15/91	Chemical Oxygen Demand		44.8157	12.8	11.3	<10					
01/23/92	Chemical Oxygen Demand		44.8157	14.3	<10	<10					
03/23/92	Chemical Oxygen Demand		44.8157	<10	<10	<10					
09/30/92	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
03/05/93	Chemical Oxygen Demand		44.8157	49.6	40.8	DRY					
09/21/93	Chemical Oxygen Demand		44.8157	<10	<10	<10					
03/23/94	Chemical Oxygen Demand		44.8157	<10	<10	<10					
09/16/94	Chemical Oxygen Demand		44.8157	20	<10	NT					
03/16/95	Chemical Oxygen Demand		44.8157	21	<10	NT					
09/13/95	Chemical Oxygen Demand		44.8157	<10	NT	NT					
03/28/96	Chemical Oxygen Demand		44.8157	<10	<10	NT					
06/20/96	Chemical Oxygen Demand		44.8157	NT	NT	NT					
09/13/96	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
03/19/97	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
06/18/97	Chemical Oxygen Demand		44.8157	NT	NT	NT					
08/30/97	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
03/10/98	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
09/21/98	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
03/18/99	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
09/21/99	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
03/21/2000	Chemical Oxygen Demand		44.8157	<10	<10	DRY					
06/28/2000	Chemical Oxygen Demand		44.8157	NT	NT	DRY	133	DRY	32		
09/28/2000	Chemical Oxygen Demand		44.8157	<10	<10	DRY	DRY	DRY	<10		
12/27/2000	Chemical Oxygen Demand		44.8157	NT	NT	NT	DRY	DRY	<10		
03/28/2001	Chemical Oxygen Demand		44.8157	14	13	DRY	19	DRY	DRY		
09/02/2001	Chemical Oxygen Demand		44.8157	13	14	DRY	NT	DRY	DRY		
03/19/2002	Chemical Oxygen Demand		44.8157	<10	<10	DRY	84	DRY	10		
09/19/2002	Chemical Oxygen Demand		44.8157	<10	<10	DRY	302	21	28		
03/14/2003	Chemical Oxygen Demand		44.8157	44	57	DRY	38	24	<10		
09/29/2003	Chemical Oxygen Demand		44.8157	17	18	DRY	DRY	DRY	14		
03/08/2004	Chemical Oxygen Demand		44.8157	16	18	DRY	75	30	30		
09/27/2004	Chemical Oxygen Demand		44.8157	14	<10	DRY	DRY	DRY	23		

			Secondary	MEAN +	SURFACE MONITORING PTS.						
DATE		PARAMETER	MCL LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	
		mg/L				Americani					
04/23/91	Chloride		250	220.275		39	11.5				
10/15/91	Chloride		250	220.275	138	135	8.02				
01/23/92	Chloride		250	220.275	55.1	60.3	12.1				
03/23/92	Chloride		250	220.275		60.2	14.8				
09/30/92	Chloride		250	220.275		88	DRY				
03/05/93	Chloride		250	220.275		23.5	DRY				
09/21/93	Chloride		250	220.275	27.4	28.4	16.6				
03/23/94	Chloride		250	220.275	64.1	64.1	19.8				
09/16/94	Chloride		250	220.275	148	130	NT				
03/16/95	Chloride		250	220.275	226	NT	NT				
09/13/95	Chloride		250	220.275	98	212	NT				
03/28/96	Chloride		250	220.275	137	144	NT				
06/20/96	Chloride		250	220.275	NT	NT	NT				
09/13/96	Chloride		250	220.275	<1	78.9	Dry				
03/19/97	Chloride		250	220.275	148	130	DRY				
06/18/97	Chloride		250	220.275	NT	NT	NT				
08/30/97	Chloride		250	220.275	120	171	DRY				
03/10/98	Chloride		250	220.275	136	145	DRY				
09/21/98	Chloride		250	220.275	86	116	DRY				
03/18/99	Chloride		250	220.275	93	81	DRY				
09/21/99	Chloride		250	220.275	84	80	DRY				
03/21/2000	Chloride		250	220.275		63	DRY				
06/28/2000	Chloride		250	220.275		NT	DRY	201	DRY	29	
09/28/2000	Chloride		250	220.275		179	DRY	DRY	DRY	42	
12/27/2000	Chloride		250	220.275		NT	NT	DRY	DRY	41	
03/28/2001	Chloride		250	220.275		97	DRY	37	DRY	DRY	
09/02/2001	Chloride		250	220.275		75	DRY	NT	DRY	DRY	
03/19/2002	Chloride		250	220.275		154	DRY	129	DRY	54	
09/19/2002	Chloride		250	220.275		194	DRY	56	11	59	
03/14/2003	Chloride		250	220.275		238	DRY	108	143	60	
09/29/2003	Chloride		250	220.275		77	DRY	DRY	DRY	68	
03/08/2004	Chloride		250	220.275		195	DRY	136	36	73	
09/27/2004	Chloride		250	220.275		138	DRY	DRY	DRY	76	

	MEAN + SURFACE MONITORING PTS.									
		ACTION	2 STD						•	
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	
	mg/L									
04/23/91	Chromium, dissolved	0.1	0.03	< 0.03	< 0.03	<0.03				
10/15/91	Chromium, dissolved	0.1	0.03	< 0.03	< 0.03	<0.03				
01/23/92	Chromium, dissolved	0.1	0.03	< 0.03	< 0.03	< 0.03				
03/23/92	Chromium, dissolved	0.1	0.03	<0.03	< 0.03	<0.03				
09/30/92	Chromium, dissolved	0.1	0.03	NT	NT	NT				
03/05/93	Chromium, dissolved	0.1	0.03	NT	NT	NT				
09/21/93	Chromium, dissolved	0.1	0.03	NT	NT	NT				
03/23/94	Chromium, dissolved	0.1	0.03	NT	NT	NT				
09/16/94	Chromium, dissolved	0.1	0.03	NT	NT	NT				
03/16/95	Chromium, dissolved	0.1	0.03	NT	NT	NT				
09/13/95	Chromium, dissolved	0.1	0.03	NT	NT	NT				
03/28/96	Chromium, dissolved	0.1	0.03	NT	NT	NT				
06/20/96	Chromium, dissolved	0.1	0.03	NT	NT	NT				
09/13/96	Chromium, dissolved	0.1	0.03	NТ	NT	DRY				
03/19/97	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
06/18/97	Chromium, dissolved	0.1	0.03	NT	NT	NT				
08/30/97	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
03/10/98	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
09/21/98	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
03/18/99	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
09/21/99	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
03/21/2000	Chromium, dissolved	0.1	0.03	NT	NT	DRY				
06/28/2000	Chromium, dissolved	0.1	0.03	NT	NT	DRY	<0.03	DRY	<0.03	
09/28/2000	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	<0.03	
12/27/2000	Chromium, dissolved	0.1	0.03	NT	NT	NT	DRY	DRY	<0.03	
03/28/2001	Chromium, dissolved	0.1	0.03	NT	NT	DRY	<0.03	DRY	DRY	
09/02/2001	Chromium, dissolved	0.1	0.03	NT	NT	NT	NT	DRY	DRY	
03/19/2002	Chromium, dissolved	0.1	0.03	NT	NT	NT	<0.005	Dry	<0.005	
09/19/2002	Chromium, dissolved	0.1	0.03	NT	NT	NT	<0.005	<0.005	NT	
03/14/2003	Chromium, dissolved	0.1	0.03	NT	NT	DRY	NT	<0.005	NT	
09/29/2003	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	NT	
03/08/2004	Chromium, dissolved	0.1	0.03	NT	NT	DRY	NT	<0.005	NT	
09/27/2004	Chromium, dissolved	0.1	0.03	NT	NT	DRY	DRY	DRY	NT	
	Mean			ERF	R ERR	ERR	ERR	ERR	ERR	
	Standard Deviation (STD)			ERF	R ERR	ERR	ERR	ERR	ERR	
	Mean + 2 STD			ERF		ERR	ERR	ERR	ERR	

			MEAN +	SURFACE MONITORING PTS.						
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	
03/16/95 Cond	ductivity, my		1158.373	420	DRY	DRY				
09/13/95 Con			1158.373	500	540	DRY				
03/28/96 Cone			1158.373	420	450	DRY				
06/20/96 Con			1158.373	NT	NT	DRY				
09/13/96 Con			1158.373	360	370	DRY				
03/19/97 Con			1158.373	520	490	DRY				
06/18/97 Con			1158.373	NT	NT	NT				
08/30/97 Con			1158.373	430	540	DRY				
03/10/98 Con			1158.373	300	350	DRY				
09/21/98 Con			1158.373	350	360	DRY				
03/18/99 Con			1158.373	702	560	DRY				
09/21/99 Con	ductivity, my		1158.373	360	350	DRY				
03/21/2000 Con			1158.373	NT	NT	DRY				
06/28/2000 Con			1158.373	NT	NT	DRY	1670	DRY	1123	
09/28/2000 Con			1158.373	NT	NT	DRY	DRY	DRY	1332	
12/27/2000 Con			1158.373	NT	NT	NT	DRY	DRY	1183	
03/28/2001 Con			1158.373	685	702	DRY	442	DRY	DRY	
09/02/2001 Con			1158.373	586	583	DRY	NT	DRY	DRY	
03/19/2002 Con			1158.373	1127	1127	DRY	880	DRY	1505	
10/07/2002 Con			1158.373	1209	960	DRY	14680	990	1444	
03/14/2003 Con			1158.373	750	780	DRY	1260	860	625	
09/29/2003 Con			1158.373	468	675	DRY	DRY	DRY	1262	
03/08/2004 Con			1158.373	1017	1025	DRY	3622	886	1475	
09/27/2004 Con			1158.373	871	1096	DRY	DRY	DRY	1400	

				SURFACE MONITORING PTS.						
		ACTION	2 STD	0144.4	0141.0	CIM O	CIM 4	SW 5	SW 6	
DATE	PARAMETER	LEVEL	SW	SW 1	SW 2	SW 3	SW 4	SVV 5	344 0	
	mg/L	4.0	0.00	-0.00	-0.00	-0.00				
04/23/91 Copp		1.3	0.03	< 0.03	< 0.03	<0.03				
10/15/91 Copp		1.3	0.03	< 0.03	< 0.03	<0.03				
01/23/92 Copp		1.3	0.03	< 0.03	< 0.03	< 0.03				
03/23/92 Copp		1.3	0.03	< 0.03	< 0.03	< 0.03				
09/30/92 Copp		1.3	0.03	NT	NT	NT				
03/05/93 Copp		1.3	0.03	NT	NT	NT				
09/21/93 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
03/23/94 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
09/16/94 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
03/16/95 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
09/13/95 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
03/28/96 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
06/20/96 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
09/13/96 Copp		1.3	0.03	NT	NT	DRY				
03/19/97 Copp	er, dissolved	1.3	0.03	NT	NT	DRY				
06/18/97 Copp	er, dissolved	1.3	0.03	NT	NT	NT				
08/30/97 Copp		1.3	0.03	NT	NT	DRY				
03/10/98 Copp	er, dissolved	1.3	0.03	NT	NT	DRY				
09/21/98 Copp		1.3	0.03	NT	NT	DRY				
03/18/99 Copp		1.3	0.03	NT	NT	DRY				
09/21/99 Copp		1.3	0.03	NT	NT	DRY				
03/21/2000 Copp		1.3	0.03	NT	NT	DRY				
06/28/2000 Copp		1.3	0.03	NT	NT	DRY	< 0.03	DRY	< 0.0	
09/28/2000 Copp		1.3	0.03	NT	NT	DRY	DRY	DRY	< 0.0	
12/27/2000 Copp		1.3	0.03	NT	NT	NT	Dry	DRY	< 0.0	
03/28/2001 Copp		1.3	0.03	NT	NT	DRY	< 0.03	DRY	DRY	
09/02/2001 Copp		1.3	0.03	NT	NT	NT	NT	DRY	DRY	
03/19/2002 Copp		1.3	0.03	NT	NT	NT	0.005	NT	< 0.00	
10/07/2002 Copp		1.3	0.03	NT	NT	NT	0.037	< 0.005	NT	
03/14/2003 Copp		1.3	0.03	NT	NT	DRY	NT	0.007	NT	
09/29/2003 Copp		1.3	0.03	NT	NT	DRY	DRY	DRY	NT	
03/08/2004 Copp		1.3	0.03	NT	NT	DRY	NT	0.005	NT	
09/27/2004 Copp		1.3	0.03	NT	NT	DRY	DRY	DRY	NT	
09/2//2004 Copp	er, dissolved	1.0	0.00	-	17.0					
Mear				ERR			0.021 0.016	0.006 0.001	E	
	dard Deviation (STD)			ERR						
Mear	+2STD			ERR	ERR	ERR	0.053	0.008	E	

			MEAN + SURFACE MONITORING PTS.							
DATE	DADAMETED	ACTION	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6	
DATE	PARAMETER "	LEVEL	SVV	SVV 1	SVV Z	344.3	344 4	344.3	344 (
04100104	mg/L		0.000705	-0.444	-0.444	-0.02				
	Iron, dissolved		0.238705	< 0.114	<0.111 0.045	<0.03				
	Iron, dissolved		0.238705	0.125 0.172		< 0.03				
	Iron, dissolved		0.238705		0.036	<0.03				
	Iron, dissolved		0.238705	0.109	< 0.03	DRY				
	Iron, dissolved		0.238705							
	Iron, dissolved		0.238705	0.078	0.102	DRY				
	Iron, dissolved		0.238705	< 0.03	< 0.03	< 0.03				
	Iron, dissolved		0.238705	0.035	< 0.03	< 0.03				
	Iron, dissolved		0.238705	< 0.03	< 0.03	NT				
	Iron, dissolved		0.238705	0.05	< 0.03	NT				
	Iron, dissolved		0.238705	< 0.03	NT	NT				
	Iron, dissolved		0.238705	< 0.03	< 0.03	NT				
	Iron, dissolved		0.238705	NT	NT	NT				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	NT	NT	NT				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY				
	Iron, dissolved		0.238705	< 0.03	0.137	DRY	NO OLE	100000	-	
	Iron, dissolved		0.238705	NT	NT	DRY	< 0.03	DRY	2.2	
09/28/2000	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY	DRY	DRY	2.57	
	Iron, dissolved		0.238705	NT	NT	NT	DRY	DRY	3.61	
	Iron, dissolved		0.238705	0.085	0.073	DRY	0.094	DRY	DRY	
09/02/2001	Iron, dissolved		0.238705	0.257	0.042	DRY	NT	DRY	DRY	
03/19/2002	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY	< 0.03	DRY	4.17	
10/07/2002	Iron, dissolved		0.238705	< 0.03	< 0.03	DRY	< 0.03	< 0.03	3.69	
03/14/2003	Iron, dissolved		0.238705	0.162	0.117	DRY	0.108	0.051	4.42	
09/29/2003	Iron, dissolved		0.238705	< 0.030	< 0.030	DRY	DRY	DRY	4.09	
03/08/2004	Iron, dissolved		0.238705	0.038	< 0.030	DRY	0.032	< 0.03	4.07	
09/27/2004	Iron, dissolved		0.238705	< 0.030	0.036	DRY	DRY	DRY	4.67	

			MEAN + SURFACE MONITORING PTS.								
	DADAMETER	ACTION	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6		
DATE	PARAMETER	LEVEL	SVV	300 1	3VV Z	344.3	344 4	344.0	011		
04/00/04	mg/L	0.015	0.007	< 0.005	< 0.005	< 0.005					
	Lead, dissolved	0.015	0.007	0.003	0.003						
	Lead, dissolved		0.007	<0.007	<0.005	< 0.005					
157/150/2015 1997	Lead, dissolved	0.015	0.007	< 0.005	< 0.005	< 0.005					
	Lead, dissolved	0.015	0.007	VU.005	V0.005	NT					
	Lead, dissolved	0.015		NT	NT	NT					
	Lead, dissolved	0.015	0.007		NT	NT					
	Lead, dissolved	0.015	0.007	NT		NT					
	Lead, dissolved	0.015	0.007	NT	NT	NT					
	Lead, dissolved	0.015	0.007	NT	NT	NT					
	Lead, dissolved	0.015	0.007	NT	NT	NT					
	Lead, dissolved	0.015	0.007	NT	NT						
	Lead, dissolved	0.015	0.007	NT	NT	NT					
	Lead, dissolved	0.015	0.007	NT	NT	NT					
	Lead, dissolved	0.015	0.007	NT	NT	DRY					
	Lead, dissolved	0.015	0.007	NT	NT	DRY					
06/18/97	Lead, dissolved	0.015	0.007	NT	NT	NT					
	Lead, dissolved	0.015	0.007	NT	NT	DRY					
	Lead, dissolved	0.015	0.007	NT	NT	DRY					
09/21/98	Lead, dissolved	0.015	0.007		NT	DRY					
03/18/99	Lead, dissolved	0.015	0.007	NT	NT	DRY					
03/21/99	Lead, dissolved	0.015	0.007		NT	DRY					
03/21/2000	Lead, dissolved	0.015	0.007		NT	DRY	or or or other particular and the second				
06/28/2000	Lead, dissolved	0.015	0.007		NT	DRY	< 0.005	DRY	<0.0		
09/28/2000	Lead, dissolved	0.015	0.007		NT	DRY	DRY	DRY	<0.0		
12/27/2000	Lead, dissolved	0.015	0.007		NT	NT	DRY	DRY	<0.0		
	Lead, dissolved	0.015	0.007		NT	DRY	< 0.005	DRY	DR		
	Lead, dissolved	0.015	0.007	NT	NT	NT	NT	DRY	DR		
03/19/2002	Lead, dissolved	0.015	0.007		NT	NT	< 0.005	NT	<0.0		
	Lead, dissolved	0.015	0.007	NT	NT	NT	< 0.005	< 0.005	NT		
	B Lead, dissolved	0.015	0.007	NT	NT	DRY	NT	< 0.005	N		
	B Lead, dissolved	0.015	0.007		NT	DRY	DRY	Dry	N		
	Lead, dissolved	0.015	0.007		NT	DRY	NT	< 0.005	ГИ		
	Lead, dissolved	0.015	0.007		NT	DRY	DRY	DRY	NΤ		

				SURFACE MONITORING PTS.						
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	sw	
	mg/L				76					
04/23/91	Magnesium, dissolved		32.97694	30.6	31.3	57				
10/15/91	Magnesium, dissolved		32.97694	24.4	24.7	57.8				
01/23/92	Magnesium, dissolved		32.97694	22.5	22.5	63.3				
03/23/92	Magnesium, dissolved		32.97694	28.6	28.1	62.2				
09/30/92	Magnesium, dissolved		32.97694	NT	NT	NT				
03/05/93	Magnesium, dissolved		32.97694	NT	NT	NT				
09/21/93	Magnesium, dissolved		32.97694	NT	NT	NT				
03/23/94	Magnesium, dissolved		32.97694	NT	NT	NT				
09/16/94	Magnesium, dissolved		32.97694	NT	NT	NT				
03/16/95	Magnesium, dissolved		32.97694	NT	NT	NT				
	Magnesium, dissolved		32.97694	NT	NT	NT				
	Magnesium, dissolved		32.97694	NT	NT	NT				
	Magnesium, dissolved		32.97694	NT	NT	NT				
	Magnesium, dissolved		32.97694	NT	NT	DRY				
	Magnesium, dissolved		32.97694	NT	NT	DRY				
	Magnesium, dissolved		32.97694		NT	NT				
	Magnesium, dissolved		32.97694	NT	NT	DRY				
	Magnesium, dissolved		32.97694		NT	DRY				
	Magnesium, dissolved		32.97694		NT	DRY				
	Magnesium, dissolved		32.97694		NT	DRY				
	Magnesium, dissolved		32.97694	NT	NT	DRY				
	Magnesium, dissolved		32.97694		NT	DRY				
	Magnesium, dissolved		32.97694	NT	NT	DRY	48.3	DRY	64	
	Magnesium, dissolved		32.97694		NT	DRY	DRY	DRY	67.	
	Magnesium, dissolved		32.97694		NT	NT	DRY	DRY	65.	
	Magnesium, dissolved		32.97694		NT	DRY	8.2	DRY	DR	
	Magnesium, dissolved		32.97694		NT	NT	NT	DRY	DR	
	Magnesium, dissolved		32.97694		NT	NT	13.2	NT	62.	
	Magnesium, dissolved		32.97694		NT	NT	105	25.3	N ⁻	
	Magnesium, dissolved		32.97694		NT	DRY	NT	12	N.	
	Magnesium, dissolved		32.97694		NT	DRY	DRY	DRY	N.	
	Magnesium, dissolved		32.97694		NT	DRY	NT	24.6	N.	
	Magnesium, dissolved		32.97694		NT	DRY	DRY	DRY	N.	
UUIZIIZUUT	mag. Josiani, diocontou		02.0. 30 1							

	MEAN + SURFACE MONITORING PTS.										
		ACTION	2 STD			1. 7 -					
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	Sw 5	SW 6		
	mg/L										
04/23/91	Mercury, dissolved	0.002	0.0005	<0.001	<0.001	<0.001					
10/15/91	Mercury, dissolved	0.002	0.0005	<0.0005	<0.0005	<0.0005					
01/23/92	Mercury, dissolved	0.002	0.0005	<0.0005	<0.0005	<0.0005					
03/23/92	Mercury, dissolved	0.002	0.0005	<0.0005	<0.0005	<0.0005					
09/30/92	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
03/05/93	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
09/21/93	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
03/23/94	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
09/16/94	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
03/16/95	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
09/13/95	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
03/28/96	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
06/20/96	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
03/19/97	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
06/18/97	Mercury, dissolved	0.002	0.0005	NT	NT	NT					
08/30/97	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
03/10/98	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
09/21/98	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
03/18/99	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
09/21/99	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
03/28/2000	Mercury, dissolved	0.002	0.0005	NT	NT	DRY					
06/28/2000	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	<0.0005	DRY	<0.0005		
09/28/2000	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	<0.0005		
12/27/2000	Mercury, dissolved	0.002	0.0005	NT	NT	NT	DRY	DRY	<0.0005		
03/28/2001	Mercury, dissolved	0.002	0.0005	NT	NT	Dry	<0.0005	DRY	DRY		
09/02/2001	Mercury, dissolved	0.002	0.0005	NT	NT	NT	NT	DRY	DRY		
03/19/2002	Mercury, dissolved	0.002	0.0005	NT	NT	NT	<0.0005	NT	<0.0005		
	Mercury, dissolved	0.002	0.0005	NT	NT	NT	<0.0005	<0.0005	NT		
03/14/2003	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	NT	<0.005	NT		
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	NT		
	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	NT	<0.0005	NT		
09/27/2004	Mercury, dissolved	0.002	0.0005	NT	NT	DRY	DRY	DRY	NT		
	Mean			ERF	R ERR	ERR	ERR	ERR	ERR		
	Standard Deviation (STD)			ERF	R ERR	ERR	ERR	ERR	ERR		
	Mean + 2 STD			ERF	R ERR	ERR	ERR	ERR	ERR		

04/23/91 Nitroge 10/15/91 Nitroge 01/23/92 Nitroge 03/23/92 Nitroge 03/305/93 Nitroge 03/05/93 Nitroge 03/23/94 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/18/96 Nitroge 03/18/97 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/21/99 Nitroge 03/21/2000 Nitroge 09/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 09/28/2001 Nitroge	en, Ammonia en, Ammonia en, Ammonia	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
10/15/91 Nitroge 01/23/92 Nitroge 03/23/92 Nitroge 03/05/93 Nitroge 03/05/93 Nitroge 09/21/93 Nitroge 09/21/93 Nitroge 09/13/95 Nitroge 03/16/95 Nitroge 03/18/96 Nitroge 03/18/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/10/98 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitrog	en, Ammonia en, Ammonia en, Ammonia en, Ammonia		1	<0.5					
10/15/91 Nitroge 01/23/92 Nitroge 03/23/92 Nitroge 03/05/93 Nitroge 03/05/93 Nitroge 03/05/93 Nitroge 03/23/94 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/18/96 Nitroge 03/28/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/21/98 Nitroge 03/21/98 Nitroge 03/21/98 Nitroge 03/21/99 Nitroge 03/21/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia en, Ammonia en, Ammonia		1	-0 F					
01/23/92 Nitroge 03/23/92 Nitroge 09/30/92 Nitroge 09/30/93 Nitroge 09/21/93 Nitroge 09/23/94 Nitroge 09/16/94 Nitroge 09/16/94 Nitroge 09/13/95 Nitroge 09/13/96 Nitroge 09/13/96 Nitroge 09/13/96 Nitroge 09/13/96 Nitroge 09/13/97 Nitroge 08/30/97 Nitroge 08/30/97 Nitroge 09/21/98 Nitroge 09/21/98 Nitroge 09/21/99 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 09/21/200 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia en, Ammonia			VU.5	< 0.5	< 0.5			
03/23/92 Nitroge 09/30/92 Nitroge 03/05/93 Nitroge 03/05/93 Nitroge 03/23/94 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/18/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	< 0.5	< 0.5	< 0.5			
09/30/92 Nitroge 03/05/93 Nitroge 03/05/93 Nitroge 09/21/93 Nitroge 03/23/94 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 03/13/95 Nitroge 03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/10/98 Nitroge 03/18/99 Nitroge 03/18/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1.0	<1.0	<1.0			
03/05/93 Nitroge 09/21/93 Nitroge 03/23/94 Nitroge 03/16/94 Nitroge 03/16/95 Nitroge 09/13/95 Nitroge 03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/21/98 Nitroge 03/21/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1.0	<1.0	<1.0			
09/21/93 Nitroge 03/23/94 Nitroge 09/16/94 Nitroge 09/16/94 Nitroge 09/13/95 Nitroge 09/13/95 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/21/98 Nitroge 03/21/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	DRY			
09/21/93 Nitroge 03/23/94 Nitroge 03/16/94 Nitroge 03/16/95 Nitroge 09/13/95 Nitroge 03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/21/98 Nitroge 03/21/98 Nitroge 03/21/99 Nitroge 03/21/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	DRY			
09/16/94 Nitroge 03/16/95 Nitroge 03/16/95 Nitroge 09/13/95 Nitroge 03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 08/30/97 Nitroge 08/30/97 Nitroge 09/21/98 Nitroge 09/21/98 Nitroge 03/18/99 Nitroge 03/12/200 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	<1			
03/16/95 Nitroge 09/13/95 Nitroge 03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 03/21/98 Nitroge 03/21/99 Nitroge 03/21/200 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	<1			
09/13/95 Nitroge 03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 03/19/97 Nitroge 03/10/98 Nitroge 03/10/98 Nitroge 03/18/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	NT			
03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 08/30/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 09/21/99 Nitroge 09/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	NT	NT			
03/28/96 Nitroge 06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 08/30/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 09/21/99 Nitroge 09/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	NT			
06/20/96 Nitroge 09/13/96 Nitroge 03/19/97 Nitroge 06/18/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 03/21/99 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	NT			
09/13/96 Nitroge 03/19/97 Nitroge 06/18/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 03/18/99 Nitroge 09/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	NT	NT	NT			
03/19/97 Nitroge 06/18/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 03/18/99 Nitroge 09/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 02/27/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge	en, Ammonia		1	<1	<1	DRY			
06/18/97 Nitroge 08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 03/18/99 Nitroge 03/21/2000 Nitroge 03/21/2000 Nitroge 09/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
08/30/97 Nitroge 03/10/98 Nitroge 09/21/98 Nitroge 03/18/99 Nitroge 03/21/2000 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	NT	NT	NT			
03/10/98 Nitroge 09/21/98 Nitroge 03/18/99 Nitroge 09/21/99 Nitroge 03/21/2000 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
09/21/98 Nitroge 03/18/99 Nitroge 09/21/99 Nitroge 03/21/2000 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
03/18/99 Nitroge 09/21/99 Nitroge 03/21/2000 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 03/28/2001 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
09/21/99 Nitroge 03/21/2000 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
03/21/2000 Nitroge 06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
06/28/2000 Nitroge 09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY			
09/28/2000 Nitroge 12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	NT	NT	DRY	<1	DRY	<1
12/27/2000 Nitroge 03/28/2001 Nitroge 09/02/2001 Nitroge			1	<1	<1	DRY	DRY	DRY	<1
03/28/2001 Nitroge 09/02/2001 Nitroge			1	NT	NT	NT	DRY	DRY	<1
09/02/2001 Nitroge			1	<1	<1	DRY	<1	DRY	DR'
			1	<1	<1	DRY	NT	DRY	DR
U.3/19/ZUUZ MITTOUE	en, Ammonia		1	<1	<1	DRY	<1	DRY	<1
10/07/2002 Nitroge			1	<1	<1	DRY	1600	<1	1.3
03/14/2003 Nitroge			1	<1	<1	DRY	164	44.8	<1
09/29/2003 Nitroge			1	<1.0	<1.0	DRY	DRY	DRY	<1.
03/08/2004 Nitroge			1	<1.0	<1.0	DRY	151	1.7	1.1
09/27/2004 Nitroge			1	<1.0	<1.0	DRY	DRY	DRY	1

			MEAN +	SURFACE N	MONITORIN	G PTS.			
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	Sw 4	SW 5	Sw 6
04/23/91 pH			9.053145	7.76	7.77	7.73			
10/15/91 pH			9.053145	7.74	8.08	7.80			
01/23/92 pH			9.053145	7.89	8.41	7.72			
03/23/92 pH			9.053145	8.60	8.54	7.45			
09/30/92 pH			9.053145	7.95	8	7.45			
03/05/93 pH			9.053145	8.11	8.11	DRY			
09/21/93 pH			9.053145	8.12	8.07	7.34			
03/23/94 pH			9.053145	8.01	7.83	7.39			
09/16/94 pH			9.053145	7.39	7.11	7.39			
03/16/95 pH			9.053145	8	8.2	DRY			
09/13/95 pH			9.053145	7.7	DRY	DRY			
03/28/96 pH			9.053145	8.2	8.3	Dry			
06/20/96 pH			9.053145	NT	NT	NŤ			
09/13/96 pH			9.053145	7.8	7.6	DRY			
03/19/97 pH			9.053145	7.4	7.6	DRY			
06/18/97 pH			9.053145	NT	NT	NT			
08/30/97 pH			9.053145	7.8	7.6	DRY			
03/10/98 pH		_	9.053145	6.1	6.1	DRY			
09/21/98 pH			9.053145	6.4	5.7	DRY			
03/18/99 pH			9.053145	7	7.3	DRY			
09/21/99 pH			9.053145	6.4	5.7	DRY			
03/21/2000 pH			9.053145	NT	NT	DRY			
06/28/2000 pH			9.053145	NT	NT	DRY	6.4	DRY	5.5
09/28/2000 pH			9.053145	NT	NT	DRY	NT	NT	NT
12/27/2000 pH			9.053145	NT	NT	NT	DRY	DRY	7.7
03/28/2001 pH			9.053145	6.9	8.3	DRY	8.6	DRY	DRY
09/02/2001 pH			9.053145	7.9	8	DRY	NT	DRY	DRY
03/19/2002 pH			9.053145	7.9	7.9	DRY	8.4	DRY	6.8
10/07/2002 pH			9.053145	6.9	8.6	DRY	7.2	7.2	7
03/14/2003 pH			9.053145	7.8	7.6	DRY	7.2	7.3	7.1
09/29/2003 pH			9.053145	7.4	7.3	DRY	DRY	DRY	7.2
03/08/2004 pH			9.053145	6.2	7.4	DRY	6.9	7.5	7.8
09/27/2004 pH			9.053145	9.4	8.4	DRY	DRY	DRY	7

			MEAN +	SURFACE M	ONITODINO	DTC			
		ACTION		OURFACE M	ONHORING	1713.			
DATE	DADAMETED		2 STD SW	CW 4	CMA	CM 2	SW 4	SW 5	SW 6
DATE	PARAMETER	LEVEL	SVV	SW 1	SW 2	SW 3	3VV 4	344.2	344.0
04/00/04	mg/L		0.4	<0.100	<0.400	<0.100			
	Phenois		0.1		<0.100	<0.100			
	Phenois		0.1	<0.100	<0.100 <0.100	<0.100			
•	Phenois		0.1	<0.100	<0.100	<0.100			
	Phenois		0.1	<0.100	<0.100	DRY			
	Phenois		0.1	<0.100	NT	NT			
	Phenols		0.1	NT 10.400					
	Phenols		0.1	<0.100	<0.100	<0.100			
•	Phenols		0.1	NT	NT	NT			
	Phenois		0.1	<0.100	<0.100	NT			
	Phenois		0.1	<0.100	NT	NT			
	PhenoIs		0.1	NT	NT	NT			
	Phenols		0.1	NT	NT	NT			
	Phenols		0.1	NT	NT	NT			
09/13/96	Phenols		0.1	<0.100	<0.100	DRY			
03/19/97	Phenols		0.1	NT	NT	NT			
06/18/97	Phenois		0.1	NT	NT	NT			
08/30/97	Phenois		0.1	<0.100	<0.100	DRY			
03/10/98	Phenols		0.1	NT	NT	NT			
09/21/98	Phenols		0.1	<0.100	<0.100	DRY			
03/18/99	Phenols		0.1	NT	NT	DRY			
09/21/99	PhenoIs		0.1	<0.100	<0.100	DRY			
03/21/2000	Phenois		0.1	NT	NT	DRY			
06/28/2000	Phenols		0.1	NT	NT	DRY	NT	NT	NT
09/28/2000			0.1	<0.100	<0.100	DRY	DRY	DRY	< 0.100
12/27/2000	Phenols		0.1	NT	NT	NT	DRY	DRY	NT
03/28/2001			0.1	NT	NT	NT	NT	DRY	Dry
09/02/2001			0.1	<0.100	< 0.100	DRY	NT	DRY	Dry
03/19/2002			0.1	NT	NT	NT	NT	NT	NŤ
10/07/2002			0.1	<0.100	<0.100	DRY	< 0.100	< 0.100	< 0.100
03/14/2003			0.1	NT	NT	DRY	NT	NT	NT
09/29/2003			0.1	<0.100	<0.100	DRY	DRY	DRY	<0.100
03/08/2004			NT	NT	NT	DRY	NT	NT	NT
09/27/2004			0.1	<0.100	<0.100	DRY	DRY	DRY	<0.100
03/21/2004	Frieliois	-	0.1	40.100	40.100	DICI	Ditt	DIXI	10.100
	Mean			ERR	ERR	ERR	ERR	ERR	ERR ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

MONITORING WELL SAMPLING RESULTS

			A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	URFACE N	MONITORIN	G PTS.			
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
04/23/91	Temperature, celsius		24.53546	12.8	12.9	13.1			
10/15/91	Temperature, celsius		24.53546	7.7	9.8	14.7			
01/23/92	Temperature, celsius		24.53546	0.9	0.9	3.5			
03/23/92	Temperature, celsius		24.53546	4.1	4.6	5.5			
09/30/92	Temperature, celsius		24.53546	2.9	3	7.1			
03/05/93	Temperature, celsius		24.53546	2.9	2.9	DRY			
09/21/93	Temperature, celsius		24.53546	13.3	12.9	15.2			
03/23/94	Temperature, celsius		24.53546	17.5	15.4	11.8			
09/16/94	Temperature, celsius		24.53546	21.2	23.8	11.8			
03/16/95	Temperature, celsius		24.53546			DRY			
09/13/95	Temperature, celsius		24.53546	4.28	DRY	DRY			
03/28/96	Temperature, celsius		24.53546	10	11	DRY			
06/20/96	Temperature, celsius		24.53546	NT	NT	NT			
09/13/96	Temperature, celsius		24.53546	18	18	Dry			
03/19/97	Temperature, celsius		24.53546	4	4	DRY			
06/18/97	Temperature, celsius		24.53546	NT	NT	NT			
08/30/97	Temperature, celsius		24.53546	23	23	DRY			
03/10/98	Temperature, celsius		24.53546	5	2	DRY			
09/21/98	Temperature, celsius		24.53546	17	17	DRY			
03/18/99	Temperature, celsius		24.53546	8	9	DRY			
09/21/99	Temperature, celsius		24.53546	17	17	DRY			
03/21/2000	Temperature, celsius		24.53546	NT	NT	DRY			
06/28/2000	Temperature, celsius		24.53546	NT	NT	DRY	29	DRY	20
09/28/2000	Temperature, celsius		24.53546	NT	NT	DRY	NT	NT	NT
12/27/2000	Temperature, celsius		24.53546	NT	NT	NT	DRY	DRY	13
03/28/2001	Temperature, celsius		24.53546	4	4	DRY	2	DRY	Dry
09/02/2001	Temperature, celsius		24.53546	16	16	DRY	NT	DRY	Dry
03/19/2002	Temperature, celsius		24.53546	4	4	DRY	9	DRY	15
10/07/2002	Temperature, celsius	-	24.53546	16	15	DRY	18	17	18
03/14/2003	Temperature, celsius		24.53546	7	8	DRY	2	5	14
	Temperature, celsius		24.53546	18	18	DRY	DRY	DRY	18
03/08/2004	Temperature, celsius		24.53546	5	5	DRY	5	4	15
09/27/2004	Temperature, celsius		24.53546	22	21	DRY	DRY	DRY	21

Mean Standard Deviation (STD) Mean + 2 STD
 10.83
 11.128
 10.3375
 10.83333
 8.666667
 16.75

 6.852728
 6.916734
 4.111246
 9.788031
 5.906682
 2.727178

 24.53546
 24.96147
 18.55999
 30.4094
 20.48003
 22.20436

DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	mg/L								
04/23/91	Total Organic Halogens	(Amaz 7)	0.266552	0.031	0.066	0.031			
	Total Organic Halogens		0.266552	0.015	< 0.01	< 0.01			
01/23/92	Total Organic Halogens		0.266552	< 0.01	< 0.01	< 0.01			
	Total Organic Halogens		0.266552	< 0.01	0.02	0.04			
09/30/92	Total Organic Halogens		0.266552	0.02	0.02	DRY			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	0.02	0.03	0.02			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	0.02	0.03	NT			
	Total Organic Halogens		0.266552	0.03	NT	NT			
09/13/95	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	0.12	0.03	DRY			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	0.11	0.02	DRY			
	Total Organic Halogens		0.266552	NT	NT	NT			
	Total Organic Halogens		0.266552	0.33	0.08	DRY			
	Total Organic Halogens		0.266552	NT	NT	DRY			
	Total Organic Halogens		0.266552	0.02	0.01	DRY			
	Total Organic Halogens		0.266552	NT	NT	DRY			
	Total Organic Halogens		0.266552	NT	NT	DRY	NT	DRY	NT
	Total Organic Halogens		0.266552	0.2	0.07	DRY	DRY	DRY	0.03
	Total Organic Halogens		0.266552	NT	NT	NT	DRY	DRY	NT
	Total Organic Halogens		0.266552	NT	NT	NT	NT	DRY	Dry
	Total Organic Halogens		0.266552	0.058	0.052	DRY	NT	DRY	Dry
	! Total Organic Halogens		0.266552	NT	NT	NT	NT	NT	NT
	! Total Organic Halogens		0.266552	0.114	0.059	DRY	0.119	< 0.01	0.104
	Total Organic Halogens Total Organic Halogens		0.266552	NT	NT	DRY	NT	NT	NT
	Total Organic Halogens Total Organic Halogens		0.266552	0.198	0.119	DRY	Dry	Dry	0.014
	Total Organic Halogens Total Organic Halogens		0.266552	NT	NT	DRY	NT	NT	NT
			0.266552	0.046	0.044	DRY	DRY	DRY	0.04
09/27/2004	Total Organic Halogens		0.200332	0.040	0.044	DICI	DICT	DIXI	0.04
	Mean Standard Deviation (STD)			0.0888 0.088876	0.046429 0.028982	0.030333 0.008179	0.119	ERR	0.04
	Mean + 2 STD			0.266552	0.104393	0.04669	0.119	ERR	0.11538

			MEAN+	SURFACE M	ONITORING	PTS.			
		ACTION	2 STD						İ
DATE	PARAMETER	LEVEL	sw	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6
	ug/L								
04/23/91	Trichloroethene *	5	1	<1	<1	<1			
10/15/91	Trichloroethene *	5	1	<1	<1	<1			
01/23/92	Trichloroethene *	5	1	<1	<1	<1			
03/23/92	Trichloroethene *	5	1	<1	<1	<1			
09/30/92	Trichloroethene *	5	1	NT	NT	NT			
03/05/93	Trichloroethene *	5	1	NT	NT	NT			
09/21/93	Trichloroethene *	5	1	NT	NT	NT			
03/23/94	Trichloroethene *	5	1	NT	NT	NT			
09/16/94	Trichloroethene *	5	1	NT	NT	NT			
03/16/95	Trichloroethene *	5	1	NT	NT	NT			
09/13/95	Trichloroethene *	5	1	NT	NT	NŤ			
03/28/96	Trichloroethene *	5	1	NT	NT	NT			
06/20/96	Trichloroethene *	5	1	NT	NT	NT			
09/13/96	Trichloroethene *	5	1	NT	NT	DRY			
03/19/97	Trichloroethene *	5	1	NT	NT	NT			
06/18/97	Trichloroethene *	5	1	NT	NT	NT			
	Trichloroethene *	5	1	NT	NT	DRY			
03/10/98	Trichloroethene *	5	1	NT	NT	DRY			
09/21/98	Trichloroethene *	5	1	NT	NT	DRY			
03/18/99	Trichloroethene *	5	1	NT	NT	DRY			
09/21/99	Trichloroethene *	5	1	NT	NT	DRY			
03/21/2000	Trichloroethene *	5	1	NT	NT	DRY			
06/28/2000	Trichloroethene *	5	1	NT	NT	DRY	<1	DRY	<1
09/28/2000	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	<1
12/27/2000	Trichloroethene *	5	1	NT	NT	NT	DRY	DRY	<1
03/28/2001	Trichloroethene *	5	1	NT	NT	DRY	<1	DRY	Dry
09/02/2001	Trichloroethene *	5	1	NT	NT	NT	NT	DRY	Dry
03/19/2002	Trichloroethene *	5	1	NT	NT	NT	<1	NT	<1
10/07/2002	Trichloroethene *	5	1	NT	NT	NT	<1	<1	NT
03/14/2003	Trichloroethene *	5	1	NT	NT	DRY	NT	<1	NT
09/29/2003	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	NT
03/08/2004	Trichloroethene *	5	1	NT	NT	DRY	NT	<1	NT
09/27/2004	Trichloroethene *	5	1	NT	NT	DRY	DRY	DRY	NT
	Mean			ERR	ERR	ERR	ERR	ERR	ERR
	Standard Deviation (STD)			ERR	ERR	ERR	ERR	ERR	ERR
	Mean + 2 STD			ERR	ERR	ERR	ERR	ERR	ERR

			MEAN +	SURFACE MONITORING PTS.							
DATE	PARAMETER	ACTION LEVEL	2 STD SW	SW 1	SW 2	SW 3	SW 4	SW 5	SW 6		
	mg/L										
04/23/91	Zinc, dissolved	2	0.03	< 0.03	< 0.03	< 0.03					
10/15/91	Zinc, dissolved	2	0.03	< 0.03	< 0.03	< 0.03					
01/23/92	Zinc, dissolved	2	0.03	< 0.03	< 0.03	< 0.03					
03/23/92	Zinc, dissolved	2	0.03	< 0.03	< 0.03	< 0.03					
09/30/92	Zinc, dissolved	2	0.03	NT	NT	NT					
03/05/93	Zinc, dissolved	2	0.03	NT	NT	NT					
09/21/93	Zinc, dissolved	2	0.03	NT	NT	NT					
03/23/94	Zinc, dissolved	2	0.03	NT	NT	NT					
09/16/94	Zinc, dissolved	2	0.03	NT	NT	NT					
03/16/95	Zinc, dissolved	2	0.03	NT	NT	NT					
09/13/95	Zinc, dissolved	2	0.03	NT	NT	NT					
	Zinc, dissolved	2	0.03	NT	NT	NT					
06/20/96	Zinc, dissolved	2	0.03	NT	NT	NT					
09/13/96	Zinc, dissolved	2	0.03	NT	NT	DRY					
03/19/97	Zinc, dissolved	2	0.03	NT	NT	DRY					
06/18/97	Zinc, dissolved	2	0.03	NT	NT	NT					
08/30/97	Zinc, dissolved	2	0.03	NT	NT	DRY					
03/10/98	Zinc, dissolved	2	0.03	NT	NT	DRY					
	Zinc, dissolved	2	0.03	NT	NT	DRY					
	Zinc, dissolved	2	0.03	NT	NT	DRY					
09/21/99	Zinc, dissolved	2	0.03	NT	NT	DRY					
	Zinc, dissolved	2	0.03	NT	NT	DRY					
06/28/2000	Zinc, dissolved	2	0.03	NT	NT	DRY	0.108	DRY	< 0.03		
09/28/2000	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	< 0.03		
	Zinc, dissolved	2	0.03	NT	NT	NT	DRY	Dry	< 0.03		
	Zinc, dissolved	2	0.03	NT	NT	DRY	0.047	Dry	Dry		
	Zinc, dissolved	2	0.03	NT	NT	NT	NT	Dry	Dry		
	Zinc, dissolved	2	0.03	NT	NT	NT	0.023	NT	<0.01		
	Zinc, dissolved	2	0.03	NT	NT	NT	0.028	0.018	NT		
	Zinc, dissolved	2	0.03	NT	NT	DRY	NT	0.023	NT		
	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	NT		
	Zinc, dissolved	2	0.03	NT	NT	DRY	NT	0.01	NT		
	Zinc, dissolved	2	0.03	NT	NT	DRY	DRY	DRY	NT		

ATTACHMENT F May 5, 1992 Semi-Annual Inspection Report

May 5, 1992

Nina Koger Solid Waste Section - IDNR Wallace State Office Building 900 E. Grand Ave. Des Moines, Iowa 50319

RE: SEMI-ANNUAL INSPECTION

AMES/STORY ENVIRONMENTAL LANDFILL

IDNR PERMIT NO. 85-SDP-13-91P

Dear Mrs. Koger:

In accordance with the Special Provisions of the Permit, a semi-annual inspection of the Ames/Story Environmental Landfill was conducted by Scott Renaud, P.E., on April 29, 1992.

At the time of the inspection, a certified landfill operator was on duty along with an equipment operator. A tracked loader is being used to spread, compact, and cover C&D waste as per the Development Plan. All wastes have been covered expect those received on this day. The site was well graded with no evidence of standing water. However, cover on the north slope is in need of repair due to erosion, and the siltation basin at the north end adjacent to the drainageway should be cleaned and reconstructed when weather conditions permit.

In addition to C&D wastes, the site is receiving a large quantity of bottom/fly ash from the City of Ames Electric Department which has been excavated from storage lagoons at the Municipal power plant. The working area was well managed and controlled; no windblown debris extended beyond the confines of the landfill. The access road is in good condition, however, the hard surface street extension and entrance have not yet been constructed as per the Development Plan and City requirements.

Top of landfill elevations in Trench No. 1 have now reached original ground surface elevation, and plans are being made for construction of Trench No. 2. All monitoring wells, monuments, and manholes for leachate collection are in good condition and operational. Landfill personnel are obtaining monthly measurements of leachate flow while CGA is obtaining monthly water level measurements in monitoring wells and quarterly water samples for testing.

Attached are copies of the test results for the fourth quarter sampling of the groundwater monitoring wells, aquifer monitoring wells, and surface water monitoring points. Test results for each quarter have been tabulated with respect to sampling point and parameter, and monthly water levels for groundwater and aquifer monitoring wells have been plotted on the attached graphs.

Page 2 - Semi-Annual Report Ames/Story Environmental Landfill

Also enclosed are two (2), 5.25" floppy diskettes containing tabular and graphical presentation of monitoring data. The mean and standard deviation have been determined for each upgradient monitoring well and compared to corresponding downgradient monitoring wells.

You will find that in a number of instances, test results in the downgradient well do not fall within two standard deviations above the mean value. Most of these findings can be categorized as follows:

- 1. Initial background concentrations of certain parameters were higher in downgradient monitoring wells than in the corresponding upgradient monitoring well.
- 2. Changes in detection limits. Where test results were below detection levels, a value of 0.5 x (detection level) was utilized in the computations. However, in some cases detection levels were increased (i.e., lead) which causes problems in the statistical analysis. In most of these cases, the concentrations were below detection levels for all four samples.
- 3. More recent tests results are less than previous levels. In most cases, an intermediate point is outside the statistical limit, but more recent results are within limits.
- 4. Increased levels in upgradient wells.

Test results which cannot be discounted for the reasons listed above are confined to MW's 25, 33 & 34 and SMP 3. All of these wells are located in the shallow alluvial sand a gravel formation along the drainageway at the north end of the site. A major interceptor sanitary sewer follows this drainageway which meanders through a heavily industrialized area of Ames. Since levels of various parameters in these downgradient wells exceeded levels in the corresponding upgradient well before waste was landfilled and have continued to increase, there is reason to suspect migration of these constituents from off-site and/or exfiltration from the sanitary sewer. The fact that levels of certain parameters in upgradient wells are increasing is also an indication of migration from off-site.

In accordance with IAC 567-103.2(6), this letter shall constitute notice to the IDNR that the analytical results for certain parameters in all downgradient monitoring wells do not fall within the control limits of two standard deviations above the mean parameter level in the corresponding up gradient well, and that the analytical results for certain parameters in all upgradient monitoring wells do not fall within two standard deviations of the mean parameter level for that monitoring well.

Page 3 - Semi-Annual Report Ames/Story Environmental Landfill

In accordance with IAC 567-103.2(7) the IDNR is to determine if additional sampling and testing is necessary. No major violations of operating rules and regulations or deviations from the approved Development Plan were noted at this time.

If you have any questions or if additional information is needed, contact Scott Renaud or myself at the CGA-Ames office.

Respectfully submitted, CLAPSADDLE-GARBER ASSOCIATES, INC.

Leslie S. Wolfe, P.E.

cc: Bill Fedeler, Ames/Story Environmental Landfill Jack Clemons, Field Office 5

ATTACHMENT G Water Elevation Data & Maps

AMES-STORY ENVIRONMENTAL LANDFILL 85-SDP-13-91P		
MONTHLY WATER ELEVATIONS MW.22 MW.23 MW.24 MW.25 MW.26 MW.27 MW.2		MW 35 MW 36 MW 37 MW 38 MW 39 MW 40 MW 41 MW 42 MW 43 MW 6 MW 7 MW 8 01 916,19 948,97 949,49 936,59 935,93 933,07 933,46 940,64 940,83 942,88 943,21 942,76
GND.ELEV. FT. 950.59 945.98 939.44 906.34 950.51 950.51 94 DATE	45.02 945.61 945.54 941.43 939.86 906.32 909.50	910,19 940,01 940,01 940,01 940,01 940,01 940,01
4/22/91 945.74 937.19 926.29 898.63 942.06 922.90 NT		6 Installed 2/96 Installed 2/96 Installed 2/96
5/21/91 945.69 937.11 926.23 898.55 942.04 922.84 NT 6/25/91 945.29 935.49 923.24 898.24 940.34 922.79 NT	NT 911.54 921.02 908.64 898.09 899.56	2 Installed 296: Installed 296 Installed 296 Installed 296
7/05/91 943.99 932.56 919.36 897.92 937.48 922.32 NT 8/31/91 943.57 932.42 918.64 897.71 937.36 922.16 NT 10/14/91 941.37 925.811 916.88 896.97 930.24 919.15 NT	NT 911.24 919.71 908.27 897.60; 899.20	2 Installed 296 Installed 296 Installed 296 Installed 296
10/14/91 941.37 925.81 916.88 896.97 930.24 919.15 NT 11/29/91 943.09 926.35 916.88 897.39 934.18 919.51 NT 12/31/91 942.76 927.64 916.88 897.03 935.01 919.78 NT	NT 909.01 917.70 906.60 897.27 900.13	3 installed 296 installed 296 installed 296 6 6 installed 296 installed
1/21/92 942.76 926.65 916.88 897.28 935.92 920.00 NT 2/17/92 941.97 929.13 916.88 897.29 935.72 920.07 NT	NT 909.55 917.27 906.74 897.12 901.12 NT 909.69 917.11 906.76 897.16 901.00	2 Installed 2/96 Installed 2/96 Installed 2/96
3/19/92 943.59 931.71 924.15 897.82 938.73 921.02 NT 4/22/92 943.89 932.55 926.15 898.47 939.22 921.60 NT	NT 910.65 919.94 908.46 898.35 903.04	0 Installed 2/96 Installed 2/96 Installed 2/96 4 Installed 2/96 In
5/30/92 942.17 932.85 922.98 897.80 938.00 921.75 NT 6/30/92 941.55 930.26 919.03 897.63 937.00 921.19 NT	NT 910,08 918.59 908.11 897.50 900.85	4 Installed 2/96 Installed 2/96 Installed 2/96
7/28/92 943,99 929,93 917.76 898.33 933.36 920.81 NT 8/22/92 943,21 930.42 919.53 897.84 938.92 920.65 NT 9/20/92 941.15 928.20 919.44 897.61 937.26 919.53 NT	NT 910,24 918.34 907.63 897.71 901.25	9 Installed 296 Installed 296 Installed 296 Installed 296
9/50/92 941.15 928.20 919.44 897.61 937.26 919.53 NT 10/29/92 940.26 927.12 916.88 897.64 936.15 919.48 NT 11/25/92 940.94 928.01 916.88 897.67 937.25 919.67 NT	NT 908.88 917.65 906.74 897.42 899.50	Installed 2/96 Installed 2/96 Installed 2/96
12/10/92 941.21 928.23 916.88 897.41 936.84 919.77 NT 1/30/93 941.33 928.29 916.88 897.39 936.76 919.88 NT	NT 909.31 917.60 906.74 897.33 900.94 NT 909.37 917.64 906.85 897.31 900.89	4 Installed 2/96 Installed 2/96 Installed 2/96 9 Installed 2/96 Installed 2/96 Installed 2/96
	39.32 934.81 909.50 917.47 906.66 897.42 901.96	3 Installed 296 installed 296 Installed 296 (Installed 296 (Installed 296 Installed
5/27/93 942.32 935.88 928.16 898.20 938.67 920.71 94	41.12 936.61 911.64 924.19 909.76 898.06 903.30	0 Installed 2/96 Installed 2/96 Installed 2/96
7/27/93 942.65 936.74 928.60 897.80 938.25 921.13 94	40.98 937.41 912.34 925.57 911.08 897.72 903.00	0 Installed 2/96 Installed 2/96 Installed 2/96 6 Installed 2/96 Installed 2/96 Installed 2/96
9/21/93 941.84 934.38 925.01 897.32 936.79 920.67 94	40.82 937.41 912.40 923.05 909.56 897.40 901.78 40.07 936.26 912.24 923.68 909.36 897.16 901.45	8 Installed 2/96 Installed 2/96 Installed 2/96
11/22/93 940.39 933.26 923.10 897.08 935.15 919.61 93 12/14/93 939.69 932.68 921.90 897.00 934.55 919.47 93	38.54 934.45 911.12 921.09 908.62 896.84 901.28	8 Installed 2/96 Installed 2/96 installed 2/96 8 Installed 2/96 in
2/28/94 938.16 933.61 922.39 896.91 NT 918.21 93	37.68 933.56 910.27 923.10 907.90 896.79 901.66	7 Installed 2/96 Installed 2/96 Installed 2/96 [
4/30/94 938.79 933.28 922.40 897.04 932.59 916.56 93	38.37 933.73 910.34 923.26 908.80 896.90 901.02	Installed 2/96 Installed 2/96 Installed 2/96
7/31/94 NT 931.38 918.76 897.23 931.62 916.31 93 8/23/94 938.79 932.73 918.24 897.10 931.87 916.53 93	39.13 933.41 909.82 919.63 907.45 897.11 901.98 38.16 934.01 909.94 919.23 907.24 896.92 901.90	8 Installed 2/96 Installed 2/96 Installed 2/96 O Installed 2/96
10/21/94 938.79 932.48 917.78 896.84 931.81 916.51 93	38.78 934.31 908.98 918.81 906.90 896.68 901.90	0 Installed 2/96 Installed 2/96 Installed 2/96 0 Installed 2/96
12/22/94 937.69 933.43 NT 896.64 930.81 916.01 93	38.52 933.11 909.74 918.13 906.51 896.48 901.90	0 Installed 296 Installed 296 Installed 296
2/6/95 936.71 932.68 917.44 896.85 930.11 915.71 93	37.56 932.88 910.12 918.43 906.58 896.72 901.70	Installed 2996 Installed 2796 Installed 2796
4/14/95 936.79 939.40 925.24 897.34 930.56 915.86 93	39.72 934.71 910.99 925.73 906.88 897.17 902.60 39.81 935.26 911.79 926.53 907.86 897.13 902.90	
6/2/95 937.64 934.38 925.44 897.14 932.51 916.23 93 8/23/95 937.39 930.38 919.14 897.14 930.74 915.91 93	38.17 933.66 909.94 919.83 907.21 896.97 901.70	O Installed 2/96 Installed 2/96 Installed 2/96 O Installed 2/96 Installed 2/96 Installed 2/96 Installed 2/96 Installed 2/96 Installed 2/96 O Installed 2/96 O Installed 2/96 O Installed 2/96 O O O O O O O O O
10/31/95 935.74 928.18 Dry 896.84 927.01 914.71 93	37.12 932.21 908.79 918.43 906.26 896.72 901.45	Installed 296 Installed 296 Installed 296
12/7/95 935.24 927.88 Dry 896.64 927.11 913.91 93	36.85 932.26 908.62 917.98 906.01 896.45 901.80	Installed 2996 Inst
2/24/96 Plugged 930.68 Dry 896.94 Plugged Plugged 93	38.02 932.61 909.24 917.98 906.06 896.77 901.90 36.72 932.01 909.17 918.25 905.91 896.72 901.80	00 Installed 2/96 Installed 2/96 Installed 2/96
4/1/96 Plugged NT Dry NT Plugged Plugged NT 6/20/96 Plugged 937.78 Dry 897.64 Plugged Plugged 94	NT NT NT NT NT NT NT NT NT NT NT 40.37 934.81 910.34 927.03 907.63 897.47 902.25	
10/24/96 Plugged 930.58 Dry 897.29 Plugged Plugged 93	38.62 933.71 909.76 919.48 906.76 897.17 901.78 38.22 933.41 909.76 920.03 906.46 897.12 901.70 39.27 933.91 909.68 928.03 906.76 897.52 902.00	0 903.34 932.49 941.19
12/11/96 Plugged 936.03 Dry 897.39 Plugged Plugged 93	338.94 934.21 911.04 926.83 907.41 897.22 901.80 137.42 932.96 910.64 924.93 907.41 897.07 901.55	30 903.64 932.42 941.14
02/25/97 Plugged 936.23 Dry 897.39 Plugged Plugged 93 03/17/97 Plugged 937.98 Dry 896.54 Plugged Plugged	37.57 932.86 910.54 923.08 907.26 897.22 901.88 910.97 929.58 907.26 897.32 902.40	
04/29/97 Plugged 934.78 Dry 897.54 Plugged Plugged 93 05/22/97 Plugged 934.53 Dry 897.49 Plugged Plugged 93	38.62 933.91 912.04 928.13 908.56 897.37 902.10 38.42 933.71 910.84 927.98 908.66 897.32 902.00	00 903.84 932.57 941.39
07/18/97 Plugged 931.53 Dry 897.29 Plugged Plugged 93	338.37	50 903.49 932.47 941.74
09/01/97 Plugged 929.38 Dry 897.04 Plugged Plugged 9	337.72 932.91 909.14 919.53 906.76 896.82 901.40 338.12 933.11 908.74 918.53 906.06 896.97 901.50	10 902.99 932.37 941.64
11/20/97 Plugged 928.08 Dry 897.04 Plugged Plugged 93.04 12/08/97 Plugged 928.68 Dry 897.04 Plugged Plugged 93.04	932.96 908.64 918.53 906.16 896.87 901.55 937.87 933.06 908.74 918.43 906.06 896.92 901.90	55 902.74 932.42 940.99 900 902.79 932.42 940.99
01/13/98 Plugged 930.48 Dry 896.99 Plugged Plugged 930.48 02/18/98 Plugged 934.13 Dry 897.44 Plugged Plugged 93.43	37.72 932.89 908.84 918.43 905.76 896.82 901.95 388.82 933.11 909.44 919.57 906.16 897.32 902.50	50 904.19 932.07 940.49
04/24/98 Plugged 937.03 925.94 897.74 Plugged Plugged 9		50 903.74 933.09 942.69
06/09/98 Plugged 934.38 922.34 897.89 Plugged Plugged 9	338.82 934.11 910.14 930.93 907.66 897.72 901.90 338.82 934.11 910.99 925.23 908.71 897.62 901.80	90 904.29 933.12 942.19
08/09/98 Plugged 932.78 922.24 897.69 Plugged 9:09/23/98 Plugged Dry Plugged Plugged 9:09/23/98	038.62 934.11 910.54 922.53 908.26 897.52 901.75 038.02 933.51 945.54 922.53	75 903.19 933.77 942.59
10/23/98 Plugged 928.98 917.14 897.34 Plugged Plugged 9 12/26/98 Plugged 928.80 Dry 897.09 Plugged Plugged 9	338.02 933.61 909.14 919.03 906.46 897.22 901.50 337.42 933.11 907.84 919.43 907.36 896.92 901.40	40 902.59 932.47 940.79
03/21/99 Plugged 931.03 Dry 897.24 Plugged Plugged 9	137.02 932.63 907.84 919.03 906.96 896.77 901.30 138.82 933.61 908.29 922.43 906.31 897.10 902.20 139.02 933.71 909.14 919.13 906.46 897.02 901.20	20 902.74 932.57 940.74
03/10/2000 Plugged 927.63 Dry 896.82 Plugged Plugged 9 06/20/2000 Plugged NT NT NT Plugged Plugged NT	936.97 931.66 907.09 917.33 905.46 896.67 902.10	10 902.89 932.02 939.79 NT NT NT 907.59 915.23 922.27 915.86 918.84 921.43 931.78 917.81 905.06
09/25/2000 Plugged 923.68 916.94 896.47 Plugged Plugged 9 12/26/2000 Plugged NT NT NT Plugged Plugged NT	938.02 931.61 905.84 916.68 904.06 896.62 901.00 T NT NT NT NT NT NT NT	00 901.79 931.97 940.41 913.64 916.28 919.47 914.56 918.32 919.98 931.73 917.76 905.31 NT NT NT 910.24 914.51 920.29 914.96 918.94 920.73 931.33 917.61 905.11
03/05/2001 Plugged 933.79; 922.31 896.84 Plugged Plugged 9 9 9 9 9 9 9 9 9	338.77 932.06 907.17 919.00 904.18 897.12 903.30 940.02 932.81 908.14 918.63 905.16 896.92 901.45 937.67 931.62 907.17 917.49 904.88 896.72 907.81	45 903.19 933.22 941.69 915.79 917.53 921.52 915.66 920.04 922.68 933.08 919.27 906.71
09/19/2002 Plugged 929.10 Dry 896.67 Plugged Plugged 9	937.67 931.62 907.17 917.49 904.88 896.72 902.81 939.76 932.56 907.86 918.22 904.51 896.51 901.69 936.29 930.62 906.34 916.92 904.68 896.41 901.37	69 902.68 933.04 941.43 922.74 924.85 923.32 916.05 920.29 922.51 934.38 920.29 907.38
05/16/2003 Plugged 939.18 Dry 897.44 Plugged Plugged 9 09/25/2003 Plugged 927.87 Dry 896.45 Plugged Plugged 9	939.12 932.61 908.04 927.18 904.66 897.22 903.60 938.62 932.39 907.48 918.18 904.31 896.28 901.86	60 903.39 931.47 940.09 920.59 921.63 926.67 917.36 922.04 925.18 934.43 919.81, 906.66 902.79 932.61 940.89 916.70 917.61 922.18 915.77 919.05 921.15 933.60 920.05 906.91
03/08/2004 Plugged 938.89 928.29 897.26 Plugged Plugged 9	939.03 932.08 908.11 929.89 905.97 897.11 903.92 938.27 932.41 908.04 919.03 905.86 896.72 901.70	92 903.53 931.74 941.49 919.35 920.84 927.31 917.33 922.84 926.45 934.61 920.16 906.80

	/30 MW31 MW32 MW33 MW34 MW35 MW36 MW37 MW38 MW39 MW40 MW41 MW42 MW43 MW6 MW7 MW8 45.54 941.43 939.86 906.32 909.50 916.19 948.97 949.49 936.59 935.93 933.07 933.46 940.64 940.63 942.88 943.21 942.76
DATE	33.75 19.95 30.89 7.86 9.64 NT NT NT NT
5/21/91 4.90 8.87 13.21 7.79 8.47 27.67 NT NT 33	33.83 20.04 30.95 7.90 9.88 NT NT NT
	34.00 20.41 31.22 8.23 9.94 NT NT NT NT 34.15 21.03 31.46 8.52 10.08 NT NT NT NT
8/31/91 7.02 13.56 20.80 8.63 13.15 28.35 NT NT 34	34.30 21.72 31.59 8.72 10.30 NT NT NT
	35.50
11/29/91 7.50 19.63 22.56 8.95 16.33 31.00 NT NT 36	36.53 23.73 33.26 9.05 9.37 NT NT NT
	36.25 24.26 33.3 9.42 8.64 NT NT NT ST S5.99 24.16 33.12 9.2 8.38 NT NT NT NT
2/17/92 8.62 16.85 22.56 9.05 14.79 30.44 NT NT 35	35.85 24.32 33.1 9.16 8.5 NT NT NT
	35.24
5/30/92 8.42 13.13 16.46 8.54 12.51 28.76 NT NT 34	34.71
7/28/92 6.6 16.05 21.68 8.01 11.15 29.7 NT NT 35	35.51 22.76 32.25 8.2 7.71 NT NT NT NT
	35.3 23.09 32.23 8.61 8.25 NT NT NT NT 36.15 23.54 32.83 8.82 9.19 NT NT NT NT
10/29/92 10.33 18.86 22.56 8.80 14.36 31.03 NT NT 36	36.66 23.78 33.12 8.90 10.00 NT NT NT
	36.35
1/30/93 9.26 17.69 22.56 8.95 13.75 30.63 NT NT 36	36.17 23.79 33.01 9.01 8.61 NT NT NT
	35.90
<u>4/27/93</u> 8.80 9.58 11.78 8.50 11.40 30.24 5.34 8.60 34	34.24 20.40 31.20 8.64 6.74 NT NT NT NT
	33.90 17.24 30.10 8.26 6.20 NT NT NT NT 33.70 16.80 29.90 8.04 6.60 NT NT NT NT
7/27/93 7.94 9.24 10.84 8.54 12.26 29.38 5.04 8.20 33	33.20 15.86 28.76 8.60 6.50 NT NT NT NT 33.10 13.84 29.80 8.80 6.84 NT NT NT NT
9/21/93 8.75 11.60 14.43 9.02 13.72 29.84 5.20 8.20 33	33.14 18.38 30.30 8.92 7.72 NT NT NT
	33.30 17.55 30.50 9.16 8.05 NT NT NT NT 34.14 19.80 31.00 9.36 8.12 NT NT NT NT
12/14/93 10.9 13.30 17.54 9.34 15.96 31.04 7.48 11.16 34	34.42 20.34 31.24 9.48 8.22 NT NT NT
	35.22 21.56 32.00 9.6 8.53 NT NT NT NT 35.27 18.33 31.96 9.53 7.84 NT NT NT NT
3/16/94 11.8 11.04 15.54 9.30 17.78 32.12 7.56 11.48 34	34.60 14.90 31.36 9.40 7.45 NT NT NT
5/17/94 11.5 12.24 16.76 9.36 18.86 35.06 7.5 11.86	35 16.96 31.32 9.5 NT NT NT NT NT NT
	35.72 21.8 32.41 9.21 7.52 NT NT NT 35.6 22.2 32.62 9.4 7.6 NT NT NT NT
9/16/94 11.74 12.86 20.5 9.2 18.56 33.95 7.52 11.48 3	35.5 22.4 32.74 9.34 7.6 NT NT NT
	36.56 22.62 32.96 9.64 7.6 NT NT NT ST S5.68 22.88 33 9.98 7.8 NT NT NT NT ST S5.68 22.88 33 9.98 7.8 NT NT NT NT ST S5.68 22.88 33 9.98 7.8 NT NT NT NT NT ST S5.68 NT NT NT NT NT NT NT NT NT NT NT NT NT
12/22/94 12.9 12.55 NT 9.7 19.7 34.5 7.5 12.5 3	35.8 23.3 33.35 9.84 7.6 NT NT NT
	35.4
3/9/95 14.8 13.08 NT 9.6 21.3 35.18 9.1 13.17 35	35.65 23.1 33.3 9.72 7.8 NT NT NT 34.55 15.7 32.98 9.15 6.9 NT NT NT NT
5/2/95 13.2 6.4 12.1 9.03 18.5 34.4 6.21 10.35 33	33.75 14.9 32 9.19 6.6 NT NT NT
	34.59 18.25 31.2 9.3 7.3 NT NT NT NT 35.6 21.6 32.65 9.35 7.8 NT NT NT NT
9/12/95 13.87 16.62 20.9 9.67 20.84 35 8.91 12.85 36	36.15 21.9 32.92 9.54 7.86 NT NT NT
	36.75 23 33.6 9.6 8.05 NT NT NT ST
12/7/95 15.35 18.1 Dry 9.7 23.4 36.6 9.17 13.35 36	36.92 23.45 33.85 9.87 7.7 NT NT NT NT
	36.95 23.4 33.7 9.9 7.9 NT NT NT 36.3 23.45 33.8 9.55 7.6 NT NT NT NT
3/22/96 Plugged 15.35 Dry 9.45 Plugged Plugged 9.3 13.6 30	36.37 23.18 33.95 9.6 7.7 12.9 18.2 11.4 NT NT NT NT NT NT 12.55 18.5 11.35
6/20/96 Plugged 8.2 Dry 8.7 Plugged Plugged 5.65 10.8	35.2 14.4 32.23 8.85 7.25 12.2 16.96 8.55
	35.78 21.95 33.1 9.15 7.72 12.95 16.6 7.9 35.78 21.4 33.4 9.2 7.8 12.85 16.48 8.3
11/18/96 Plugged 7.75 21.82 8.65 Plugged Plugged 6.75 11.7 33	35.86 13.4 33.1 8.8 7.5 12.28 16.6 8.35
	34.5
02/25/97 Plugged 9.75 19.85 8.95 Plugged Plugged 8.45 12.75	35 18.35 32.6 9.1 7.62 12.52 17.35 9.35 34.67 11.85 32.6 9 7.1 12.2 17.2 8.9
04/29/97 Plugged 11.2 13.8 8.8 Plugged Plugged 7.4 11.7	33.5 13.3 31.3 8.95 7.4 12.4 16.5 8
	34.7 13.45 31.2 9 7.5 12.35 16.4 8.1 35.15 17.3 31.6 9.2 7.7 12.6 16.42 7.9
07/18/97 Plugged 14.45 19.2 9.05 Plugged Plugged 7.7 12.2	35.7 20.2 32.3 9.2 7.9 12.7 16.5 7.75
(09/01/97 Plugged 16.6) 21.1 9.3 Plugged Plugged 8.3 12.7	36.35 21.8 33 9.4 8 13.15 16.55 7.85 36.4 21.9 33.1 9.5 8.1 13.2 16.6 7.85
10/27/97 Plugged 17.7 dry 9.2 Plugged Plugged 7.9 12.5	36.8 22.9 33.8 9.35 8 12.2 16.75 8.5 36.9 22.9 33.7 9.45 7.95 13.45 16.55 8.5
12/08/97 Plugged 17.3 day 9.3 Plugged Plugged 8.15 12.55	36.8 23 33.8 9.4 7.6 13.4 16.55 8.5
01/13/98 Plugged 11.5 dry 9.35 Plugged Plugged 8.3 12.72 02/18/98 Plugged 11.85 dry 8.9 Plugged Plugged 7.2 12.5 03/05/98 Plugged 11.2 dry 9 Plugged Plugged 7.15 11.9 3	36.7 23 34.1 9.5 7.55 13.5 16.7 8.8 36.1 21.86 33.7 9 7 12 16.9 9
03/05/98 Plugged 11.2 dry 9 Plugged Plugged 7.15 11.9 3	35.45 18 33.8 9.2 7 12.83 16.65 8.48
O4/24/98 Plugged 8.95 13.5 8.6 Plugged Plugged 6.5 10.9 05/18/98 Plugged 11.9 15.15 8.85 Plugged Plugged 7.4 11.6 3	34.3 13.6 32 8.7 7 12.45 15.88 6.8 35.02 15.7 32 9 7.5 12.98 16.05 7.5
06/09/98 Plugged 11.6 17.1 8.45 Plugged Plugged 7.2 11.5	35.4 10.5 32.2 8.6 7.6 11.9 15.85 7.3
1 08/09/98 Plugged 13.21 17.21 8.65 Plugged Plugged 7.41 11.51	34.55 16.2 31.15 8.7 7.7 12.9 14.8 6.5 35 18.9 31.6 8.8 7.75 13 15.2 6.9
09/23/98 Plugged dry Plugged Plugged 8 12.1 10/23/98 Plugged 17 22.3 9 Plugged Plugged 8 12 12/26/98 Plugged 17.18 Dry 9.25 Plugged Plugged 8.6 12.5	
09/23/98 Plugged dry Plugged Plugged 8 12.1 10/23/98 Plugged 17 22.3 9 Plugged Plugged 8 12 12/26/98 Plugged 17.18 Dry 9.25 Plugged 18.6 12.5	37.7 22 32.5 9.4 8.1 13.6 16.5 8.7
01/08/99 Plugged 17.4 Dry 9.4 Plugged Plugged 9 12.98 03/21/99 Plugged 14.95 Dry 9.1 Plugged Plugged 7.2 12 3	37.7 22.4 32.9 9.55 8.2 13.8 16.45 9.1 37.25 19 33.55 9.22 7.3 13.45 16.4 8.75
09/19/99 Plugged 15.45 22.1 9.15 Plugged Plugged 7 11.9	36.4 22.3 33.4 9.3 8.3 13.5 15.8 7.4
96/20/2000 Plugged NT NT NT Plugged Plugged NT NT NT NT	38.45 24.1 34.4 9.65 7.4 13.3 16.95 9.7 VT NT 11.1 25.4 37.7
09/25/2000 Plugged 22.3 22.5 9.87 Plugged Plugged 8 14	39.71 24.75 35.8 9,7 8,5 14.4 17 9.08 22.95 19.65 13.6 18.9 22.32 20.85 11.15 25.45 37.45
03/05/2001 Plugged 12.19 17.13 9.5 Plugged Plugged 7.25 13.55 3	38.37 22.43 35.68 9.2 6.2 12.5 17.25 8.6 21.1 17.4 8.3 16.95 19.49 16.55 10.8 26.2 37.55
09/02/2001 Plugged 15.2 DRY 9.25 Plugged Plugged 6 12.8	37.4 22.8 34.7 9.4 8.05 13 15.75 7.8 20.8 18.4 11.55 17.8 20.6 18.15 9.8 23.94 36.05
09/19/2002 Plugged 16.88 DRY 9.67 Plugged Plugged 6.26 13.05 3	37.68 23.21 35.35 9.81 7.81 13.51 15.93 8.06 13.85 11.08 9.75 17.41 20.35 18.32 8.5 22.92 35.38
03/12/2003 Plugged 21.08 Dry 9.77 Plugged Plugged 9.73 14.79	39.2 24.51 35.18 9.91 8.13 13.28 18.18 10.6 18.35 16.47 10.7 18.48 21.5 19.24 10.42 24.12 36.53 37.5 14.25 35.2 9.1 5.9 12.8 17.5 9.4 16 14.3 6.4 16.1 18.6 15.65 8.45 23.4 36.1
09/25/2003 Plugged 18.11 DRY 9.89 Plugged Plugged 7.4 13.22 3	38.06 23.25 35.55 10.04 7.64 13.4 16.36 8.6 19.89 18.32 10.89 17.69 21.59 19.68 9.28 23.16 35.85
	37.43 11.54 33.89 9.21 5.58 12.66 17.23 8 17.24 15.09 5.76 16.13 17.8 14.38 8.27 23.05 35.96 37.5 22.4 34 9.6 7.8 13 16.5 8.4 18.68 16.45 9.65 17.25 20.8 18.8 6.6 22.7 35.2

ATTACHMENT H Leachate Elevation & Thickness Assessment Data

Leachate Surface Elevation						Top of Liner Ele	evation Data		Leachate Thickness (feet)					
	LPZ-T1-1	LPZ-T2-1	LPZ-T3-1	LPZ-T4-1		LPZ-T1-1	LPZ-T2-1	LPZ-T3-1	LPZ-T4-1		LPZ-T1-1	LPZ-T2-1	LPZ-T3-1	LPZ-T4-1
PVC ELEV. FT.	925.85	932.62	922.72	922.31	PVC ELEV, FT.	925.85	932.62	922.72	922.31					
					Liner Depth	16	21	11	11					
DATE					Liner Elev	909.85	911.62	911.72	911.31				70-114-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
05/27/2003	909.85	911.62	913.22	914.91	05/27/2003	909.85	911.62	911.72	911.31	05/27/2003	0	0		
05/28/2003	909.85	911.62	912.32	913.91	05/28/2003	909.85	911.62	911.72	911.31		0	0		2.6
06/23/2003	909.85	911.62	912.33	914.41	06/23/2003	909.85	911.62	911.72	911.31		0	0		3.1
07/31/2003	909.85	911.62	912.32	913.91	07/31/2003	909.85	911.62	911.72	911.31		0	0	0.6	2.6
08/13/2003	909.85	911.62	912.32	913.51	08/13/2003	909.85	911.62	911.72	911.31	08/13/2003	0	0	0.6	2.2
10/13/2003	909.85	911.62	912.22	913.11	10/13/2003	909.85	911.62	911.72	911.31	10/13/2003	0	0	0.5	1.8 2.3
11/05/2003	909.85	911.62	912.02	913.61	11/05/2003	909.85	911.62	911.72	911.31	11/05/2003	0	0	0.3	1.9
12/08/2003	909.85	911.62	912.22	913.21	12/08/2003	909.85	911.62	911.72	911.31	12/08/2003	0	0	0.5 0	
01/05/2004	909.85	911.62	911.72	911.31	01/05/2004	909.85	911.62	911.72	911.31	01/05/2004	0	0	_	1.9
02/10/2004	909.85	911.62	912.12	913.21	02/10/2004	909.85	911.62	911.72	911.31	02/10/2004	0		0.4	2.46
03/08/2004	910.25	911.62	912.12	913.77	03/08/2004	909.85	911.62	911.72	911.31		0.4	0	0.4	2.40
04/08/2004	909.85	911.62	912.22	914.01	04/08/2004	909.85	911.62	911.72	911.31		0	0	0.5	
05/28/2004	910.35	911.62	912.32	913.91	05/28/2004	909.85	911.62	911.72	911.31	05/28/2004	0.5		0.6	2.5
06/18/2004	909.95	911.62	912.52	913.81	06/18/2004	909.85	911.62	911.72	911.31	06/18/2004	0.1	0	0.8	1.9
07/22/2004	909.85	911.62	912.12	913.21	07/22/2004	909.85	911.62	911.72	911.31	07/22/2004	0	- 0	0.4	1.8
08/24/2004	910.05	911.62	912.32	913.11	08/24/2004	909.85	911.62	911.72	911.31	08/24/2004	0.2	0	0.8	1.0
09/28/2004	910.05	911.62	912.02	912.31	09/28/2004	909.85	911.62	911.72	911.31	09/28/2004	0.2		0.3	<u></u> '
														
														
														
														
									·····	ļ				
														
										l			 	
					ļ					├				
													ļ	

								3.50		
							-			
					٠					
									ē	

ATTACHMENT I City of Ames Leachate Testing Results

RECEIVED JUN 0 7 2004

Water and Pollution Control Department

300 East Fifth Street, Building 1 Ames, IA 50010 Phone 515-239-5150 ◆ Fax 515-239-5251

7	\cap	٠	
		-	

Bill Fedeler, Ames-Story Environmental Landfill - Site 2

FROM:

Karla Tebben/Winnie Gleason, Pretreatment Coordinators

DATE:

June 3, 1004

SUBJECT:

Pretreatment Reporting: Spring 2004 (Permit No. 7093-5)

Listed below are analytical results of the wastewater sampled at your facility's Site 2 on May 3, 2004. The laboratory did not collect a sample at Site 1 because there was no flow through the manhole. All tested parameters for Site 2 are within permit limits. However, the COD and TKN results exceed surcharge limits. Surcharge calculations and billings will be addressed separately. Please note that the volatile organics detection levels are elevated due to dilution. The sample required dilution due to foaming of the sample during purging. Thank you for your cooperation with the pretreatment program.

Parameter	Permit Limits/ Surcharge (mg/L)	Recommended Maximum Discharge Concentrations (mg/L)	40CFR Part 445 Maximum Daily Limit (mg/L)	40CFR Part 445 Monthly Average Limit (mg/L)	Results (mg/L)
pH, units	6.0 - 10.0		6.0-9.0	6.0-9.0	7.18
TSS	1,500/300		88	27	13
Ammonia-N	200/40		10	4.9	35
TKN	/40	250			42
COD	2,500/250		140	37	460
BTEX	0.75				< 0.25
Tetrachloroethene					< 0.25
p-Cresol			0.025	0:014	< 0.005
alpha-Terpineol			0.033	0.016	< 0.005
Benzoic Acid			0.12	0.071	< 0.02

Complete the bottom portion of this page and return one copy to us by June 16, 2004. By doing so, the reporting requirements for this period will be fulfilled.

PROCESS CHANGES SINCE November 13,	2003:
	inquiry of the person(s) directly responsible for managing certify that, to the best of my knowledge, there has been no atment program since November 13, 2003.
NAME	DATE

c: Todd Whipple, Fox Engineering Jim McElvogue

Water and Pollution Control Department

300 East Fifth Street, Building 1 Ames, IA 50010 Phone 515-239-5150 ◆ Fax 515-239-5251

October 13, 2004

Mr. Bill Fedeler Ames-Story Environmental Landfill P.O. Box 2483 Ames, IA 50010

Re:

Pretreatment Sampling Expenses

Dear Mr. Fedeler:

During the period January 1, 2004 through June 30, 2004, the City performed pretreatment sampling at the Ames-Story Environmental Landfill. The cost associated with the sampling is \$365.03.

This amount will be billed to you from the City Finance Department. A detailed summary of the costs is enclosed.

Please give me a call at 515-239-5150 if you have any questions concerning this matter.

Yours very truly,

Winifred G. Gleason, P.E.

Pretreatment Program Co-Coordinator Water and Pollution Control Department

/bas

Enclosure

pc:

Linda Stole

Todd Whipple Jim McElvogue

Water and Pollution Control Department

300 East Fifth Street, Building 1 Ames, IA 50010 Phone 515-239-5150 ◆ Fax 515-239-5251

TO:

Bill Fedeler, Ames-Story Environmental Landfill - Site 2

FROM:

Karla Tebben/Winnie Gleason, Pretreatment Coordinators

DATE:

November 29, 1004

reporting requirements for this period will be fulfilled.

Jim McElyogue

SUBJECT:

Pretreatment Reporting: Fall 2004 (Permit No. 7093-5)

Listed below are analytical results of the wastewater sampled at your facility's Site 2 on September 20, 2004. The laboratory did not collect a sample at Site 1 because there was no flow through the manhole. All tested parameters for Site 2 are within permit limits. Thank you for your cooperation with the pretreatment program.

Parameter	Permit Limits/ Surcharge (mg/L)	Recommended Maximum Discharge Concentrations (mg/L)	40CFR Part 445 Maximum Daily Limit (mg/L)	40CFR Part 445 Monthly Average Limit (mg/L)	Results (mg/L)
pH, units	6.0 - 10.0		6.0-9.0	6.0-9.0	6.86
TSS	1,500/300		88	27	6.2
Ammonia-N	200/40		10	4.9	39
COD	2,500/250		140	37	450
TPH (gasoline)	10.0				< 0.100
BTEX	0.75				< 0.011

Complete the bottom portion of this page and return one copy to us by December 20, 2004. By doing so, the

Pretreatment Sampling

Environmental Landfill South

7-Sep-04

Travel Time (min): 26

Trip (miles): 6

	Person	nel	Maintenan	ce Prep	Laborator	у Ртер	Site		Sampling			Ar	alysis	751
					1		Time			#		1		Total
Date	Employee	Rate	Time (min)	Cost	Time (min)	Cost	(min)	Cost*	Equipment	used	Cost	Lab No.	Lab Charge	Charges
		000.07		* 0.00	15	\$ 7.02	23	\$22.92	Truck/Van	1	\$3.30	40968	\$82.00	\$115.24
5/3/2004	TC	\$28.07		\$0.00	15	\$0.00	23	\$16.28	Sampler/Ice		\$ 0.00	UHL	\$200.00	\$218.61
ļ	EA	\$19.94	7	\$2.33 \$0.00		\$0.00 \$0.00		\$0.00	S&H (UHL)	 	\$0.00	OIL	\$200.00	\$0.00
		L		\$2.33		\$7.02	L	\$39.21	SGGI (UHL)		\$3.30		\$282.00	\$333.85
Subtotal				Ψ2.JJ		Ψ7.02		457.21			40.00		4202.00	4000.00
Notes:														
				\$0.00		\$0.00		\$0.00	Van		\$0.00			\$0.00
-				\$0.00		\$0.00		\$0.00	Sampler/Ice		\$0.00			\$0.00
				\$0.00		\$ 0.00		\$0.00	S&H (UHL)		\$0.00			\$ 0.00
Subtotal				\$0.00		\$0.00		\$0.00			\$0.00		\$0.00	\$0.00
Notes:														1
											•		,	i I
				\$0.00		\$0.00		\$0.00	Van		\$0.00			\$0.00
				\$0.00	ļ	\$0.00	 	\$0.00	Sampler/Ice		\$0.00			\$0.00
l		L	l	\$0.00		\$0.00	L	\$0.00	S&H (UHL)		\$0.00 \$0.00		\$0.00	<u>\$0.00</u> \$0.00
Subtotal				\$0.00		\$0.00	•	\$0.00			\$0.00		\$0.00	\$0.00
Notes:														
		1	1	\$0.00		\$0.00		\$0.00	Van		\$0.00		1	\$0.00
		 		\$0.00		\$0.00		\$0.00	Sampler/Ice		\$0.00			\$0.00
	- 			\$0.00		\$0.00		\$0.00	S&H (UHL)		\$0.00			\$0.00
Subtotal		<u> </u>	<u> </u>	\$0.00		\$0.00		\$0.00	` ,		\$0.00		\$0.00	\$0.00
Notes:														
1,000.					•]
		I		\$0.00		\$0.00		\$0.00	Van		\$0.00		1	\$0.00
				\$0.00		\$0.00		\$0.00	Sampler/Ice		\$0.00	•		\$0.00
				\$0.00		\$0.00		\$0.00	S&H (UHL)		\$0.00			\$0.00
Subtotal		<u> </u>		\$0.00		\$0.00		\$0.00			\$0.00		\$0.00	\$0.00
Notes:														
1.0000														
				\$0.00		\$0.00		\$0.00	Van		\$0.00		1	\$0.00
L				\$0.00		\$0.00		\$0.00	Sampler/Ice		\$0.00			\$0.00
Ì				\$0.00		\$ 0.00		\$0.00	S&H (UHL)		\$ 0.00			\$0.00
Subtotal				\$0.00		\$0.00		\$0.00	. ,		\$0.00		\$0.00	\$0.00
Notes:														·
• •]
Total				\$2.33		\$7.02		\$39.21			\$3.30		\$282.00	€333 .85

^{*}Cost includes: sampling time + travel time to site

ATTACHMENT J Explosive Gas Monitoring Results

	SAMPLING DAT	E: Ded	ember 8, 20	003
Reference* Location	Combustible	%Oxygen	CO ppm	H2S ppm
MW28/MW29	0	20.6 to 20.8	0	0
MW36/MW37	0	20.6 to 20.8	0	0
MW35	0	20.6 to 20.8	0	0
MW33/MW25	0	20.6 to 20.8	0	0
MW32/MW24	0	20.6 to 20.8	0	0
MW30/MW23	0	20.6 to 20.8	0	0
MW34	0	20.6 to 20.8	0	0
MW31	0	20.6 to 20.8	0	0
Trailer	0	20.6 to 20.8	0	0
MW6/MW7/MW	8 0	20.6 to 20.8	0	0
MW38/39	0	20.6 to 20.8	0	0
MW40/MW41	0	20.6 to 20.8	0	0
MW42/MW43	0	20.6 to 20.8	0	0

Reference* Location	SAMPLING DAT Combustible		arch 14, 200 CO ppm	
MW28/MW29	0	20.8	0	0
MW36/MW37	0	20.8	0	0
MW35	0	20.8	0	0
MW33/MW25	0	20.8	0	0
MW32/MW24	0	20.8	0	0
MW30/MW23	0	20.8	0	0
MW34	0	20.8	0	0
MW31	0	20.8	0	0
Trailer	0	20.8	0	0
MW6/MW7/MW	8 0	20.8	0	0
MW38/39	0	20.8	0	0
MW40/MW41	0	20.8	0	0
MW42/MW43	0	20.8	0	0

S	AMPLING DAT	E: J	une 18, 200	4
Reference* Location	Combustible	%Oxygen	CO ppm	H2S ppm
MW28/MW29	0	20.6	0	0 .
MW36/MW37	0	20.6	0	0
MW35	0	20.6	0	0
MW33/MW25	0	20.6	0	0
MW32/MW24	0	20.6	0	0
MW30/MW23	0	20.6	0	0
MW34	0	20.6	0	0
MW31	0	20.6	0	0
Trailer	0	20.6	0	0
MW6/MW7/MW8	0	20.6	0	0
MW38/39	0	20.6	0	0
MW40/MW41	0	20.6	0	0
MW42/MW43	0	20.6	0	0

Reference*	SAMPLING DAT Combustible	•	ember 28, 2 CO ppm	
Location				
MW28/MW29	0	20.8	0	0
MW36/MW37	0	20.8	0	0
MW35	0	20.8	0	0
MW33/MW25	0	20.8	0	0
MW32/MW24	0	20.8	0	0
MW30/MW23	0	20.8	0	0
MW34	0	20.8	0	0
MW31	0	20.8	0	0
Trailer	0	20.8	0	0
MW6/MW7/MW8	0	20.8	0	0
MW38/39	0	20.8	0	0
MW40/MW41	0	20.8	0	0
MW42/MW43	0	20.8	0	0